
Enter Sandbox: Android 
Sandbox Comparison

Sebastian Neuner, Victor van der Veen, 

Martina Lindorfer, Markus Huber,
Georg Merzdovnik, Martin Mulazzani and Edgar Weippl



Overview

• In a nutshell
– Static analysis

– Dynamic analysis

– Combined approach

• Motivation

• Contributions
– Evaluated sandboxes

– Interdependency

– Sandbox effectiveness

• Summary

2



Analysis in a Nutshell - Static

• Static Analysis

– Check code against rules

• Source is available or

• Application is disassembled

– Pros

• Fast

• No execution, no risk

– Con

• Does not detect runtime specifics

3



Analysis in a Nutshell - Dynamic

• Dynamic analysis

– Execute target application

• Analyse behaviour

• Observe environment

– Pro

• Find runtime specifics (e.g. temporal infos)

– Cons

• Complex

• Risky

• Code coverage
4



Combined Approach

• More effective analysis

– Static + dynamic (hybrid)

– Example:

• Static analysis of suspicious sample

• Build callgraph

• Detect GUI elements

Trigger GUI elements (not randomly but targeted)

Taint analysis on base of callgraph

5



Combined Approach

• More effective analysis

– Static + dynamic (hybrid)

– Example:

• Static analysis of suspicious sample

• Build callgraph

• Detect GUI elements

Trigger GUI elements (not randomly but targeted)

Taint analysis on base of callgraph

6



Combined Approach

• More effective analysis

– Static + dynamic (hybrid)

– Example:

• Static analysis of suspicious sample

• Build callgraph

• Detect GUI elements

Trigger GUI elements (not randomly but targeted)

Taint analysis on base of callgraph

7



Sandbox

• Analysis environment for unknown software

– Virtualized

– Mostly hybrid

– Watch network traffic, syscalls and other 
activities 

– Possible harms in case of malware (for host and 
guest system)

8



Motivation

• 1 billion Android devices expected in 2017

• SMSZombie: 500.000 infections (China)

• Too many sandboxes out there

– Not enough coverage

– No comparison

9



Why Compare?

• A lot of sandboxes

– Which work and are available

– How are they reused -> Interdependency

• Some sandboxes provide novel features

• No Swiss-Army-Knife

10



Contributions

• Comparison of 16 available sandboxes

– Level of introspection

– Functionality

– Interdependency

• Discussion of methods to detect and probe 
dynamic analysis frameworks

11



Contributions

• Effectiveness of 8 sandboxes

– Just online (no source downloaded and run)

– Public malware

– Master Key vulnerabilities

12



16 Sandboxes

Table 1: Framework availability

13



Types of Introspection

Table 2: Results. Part 1. „---“ installable on any Android version. „?“: Not possible to determine
14



Analysis Features

Table 2: Results. Part 2

15



Probing

• Benign.apk

– Unpack with apktool

– Change min and target SDK version (5, 9, 11, 14, 19, 

25)

– Repackage with apktool

– Verify new SDKVersion

• A: android:minSdkVersion(0x0101020c)=(type 
0x10)0x19

• A: android:targetSdkVersion(0x01010270)=(type 
0x10)0x19

16



Sandboxes leaking API level

E.g.

„Errors: Setup command ‚_JBInstallAPK‘ failed: 
Installation failed: device is running API Level 
15, but APK requires 19“

17



Interdependecy?

• Read documentations

• Read papers

• Emailed with authors

• Uploaded specific samples to see if 
something crashes :-D

18



Interdependency!

19



Effectiveness

• Chosen malware

– Public available malware sets:

• Contagio Mobile

• Android Malware Genome Project

– Master Key vulnerabilities

• Weaknesses in ZIP fileformat handling within Android 

( APK)

– Python bug for specific zeros in ZIP header

20



Master Key

• How these weaknesses influence 
interdependency?

– Wrong handling in massive used software 

Would affect every edge in contact

21



So this would become…

22



…this

23



Sample Selection

• Coverage (regarding table V in [1]):

– Remote control

– Financial charges

– Personal information stealing

[1] … Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and 
Evolution,” in Proceedings of the 33rd Annual IEEE Symposium on Security and Privacy
(S&P), 2012.

24



Sample Origin

• 6 samples from Malware Genome Project

• 2 sample from private contact

• 4 crafted helloWorld apps

25



Malware Samples

• Obad
– Kaspersky Labs: „[...] one of the most 

sophisticated mobile trojans to date [...]“

– Part of botnet

– 24 requested permissions
• Send SMS

• Send/receive data over network

• ...

– (Out of date) anti-emulation techniques

– From: Malware Genome Project

26



Malware Samples

• Geinimi

– Sending SMS

– Phone calls

– Total remote control

– From: Malware Genome Project

27



Malware Samples

• DroidKungFu

– Various privilege escalation techniques

• RageAgainstTheCage

– Reads IMEI and other sensitive data

– Send data over network

– From: Malware Genome Project

28



Malware Samples

• Basebridge/Nyleaker

– Invalid APK Manifest to evade Androguard

• Successfully launched against a sandbox

– From: Andrubis

29



Results (Again Tables)

Table 3: Evaluation results with malware. Two samples per family

30



Tables, Tables, Tables...

Table 4: Evaluation results with Master Key vulnerabilities and the Python ZIP bug

31



Consequences

• Sandbox authors notified

– Appreciated by authors

– A lot of interesting discussions

32



Summary

1. Some sandboxes are hardly maintained or 
totally abandoned

2. Some sandboxes do not recognize even 
well-known malware

3. Interdependency and code reuse could lead 
to serious problems

34



Suggestions

• Not feasible

– Do a qualified code review of every sandbox

– Share reports to see if sandbox detects well-
known malware

– Build the analysis Swiss-Army-Knife

• Feasible

– Build a meta-engine that submits a sample to 
every known sandbox

35



Thanks for your Time

• Sebastian Neuner

• SBA Research

– https://www.sba-research.org/

• sneuner@sba-research.org

– PGP: 0xDE76C43A

36

https://www.sba-research.org/


37


