
Martina Lindorfer, Matthias Neugschwandtner, Christian Platzer

SBA Research, Vienna, Austria 
IBM Research, Zurich, Switzerland 
International Secure Systems Lab, Vienna University of Technology, Austria 

MARVIN: Efficient And Comprehensive 
Mobile App Classification 
Through Static and Dynamic Analysis 



Martina Lindorfer: MARVIN (COMPSAC 2015)

State of Mobile Malware

2



3

?

Real or Fake Flappy Bird App?

Origin

Reviews

Permissions

AntivirusAppverify

Martina Lindorfer: MARVIN (COMPSAC 2015)



Use Cases
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App Classification
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Classification Goals

• Use machine learning to classify Android apps

• Address grey area between malware and goodware 
- Provide user with a malice score from 0 to 10

• Address drawbacks of related work
- Only consider static features
- Trained and evaluated on very small dataset
- Do not account for history of dataset

• Long-term practicality through efficient retraining
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Static vs. Dynamic Analysis

• Static analysis…
- code is not executed
- all possible branches can be examined (in theory)
- quite fast

• Problems of static analysis…
- undecidable in general case, approximations necessary
- obfuscated & packed code
- self-modifying code
- code (down)loaded at runtime
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Static vs. Dynamic Analysis

• Dynamic analysis…
- code is executed
- sees behavior that is actually executed 
- sees dynamically loaded code

• Problems of dynamic analysis…
- in general, single path is examined
- analysis environment possibly not invisible
- scalability issues

9Martina Lindorfer: MARVIN (COMPSAC 2015)

Combine features from static AND dynamic analysis



Feature Extraction in ANDRUBIS

• Extended ANDRUBIS app analysis sandbox [BADGERS2014]

• Static Analysis
- Required/Used permissions, Activities, Services, Receivers, …
- Certificate metadata (owner, validity, …)
- Included libraries

• Dynamic Analysis
- File/network/phone activities
- Cryptographic operations
- Leaked data
- Loading of dynamic code (DEX and native code)

• Output: Sparse feature vector of binary features
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Classification Challenges

• High-dimensional feature space
- Explicit feature selection: 

Order features by discriminative power (F-Score)
- Implicit feature selection: 

Order features by weights from classifier
• Sparse data
• Grey area between malware and goodware
- Classifier outputs probability that sample belongs to class
- Scale probability in interval [0,10]

• Performance
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Experiments with SVM and linear classifier with different 
regularization methods
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Evaluation
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Evaluation Overview

• Large training and testing sets
- Set of goodware apps from Google Play Store
- Set of known malware with AV labels from VirusTotal
- 135,823 unique Android applications (15,741 known malware)

Goals:
1. Evaluate accuracy of different classifiers
2. Evaluate performance (market-scale classification)
3. Evaluate long-term practicality
- History of samples in dataset matters [ESSoS2015]
- Estimate retraining intervals and efficiency

4. Evaluate most distinguishing features
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Classification Accuracy
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• Accuracy of 99.83% overall
• 0.0275% false positives
• 1.3543% false negative
• Bayesian detection rate of 98.24%



Market-Scale Classification
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—> Best config: 58.5 false alarms  
—> Worst config: 471 false alarms

~ 1,500,000 apps 
in Google Play



Market-Scale Classification
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Google Play: 
up to 45,000 new  

apps per month
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Our current capacity: 3,500 apps/day



Long-Term Practicality (Less Features)
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Long-Term Practicality (More Features)
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Distinguishing Features

• Gain insights into classification through F-Score/feature weights

• Features most relevant for classification of malware:
- Required/Used permissions
- Certificates
- SMS-related features
- Information leaks
- Dynamic code loading
- Network activity and contacted hosts
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Future Work and Conclusion
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Future Work

• Dynamic features++
- System-level events from native code analysis
- More intelligent, user-like UI interactions

• Static features ++
- Meta info in app markets from AndRadar [DIMVA2014]

• Interception of app installation process

• Defence against analysis evasion (arms race)

22Martina Lindorfer: MARVIN (COMPSAC 2015)



Conclusion

• Classification of Android apps using machine learning
- Based on static AND dynamic features
- Represented as a malice score

• Large-scale evaluation on over 135,000 apps
- Correctly classifies 98.24% of malware samples
- Very low positives of < 0.04%
- Retraining to maintain accuracy

• Publicly available for submissions through web interface and 
dedicated mobile app
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Questions?

email
 

twitter

http

mlindorfer@iseclab.org  
andrubis@iseclab.org

@iseclaborg

http://www.iseclab.org/people/mlindorfer
https://anubis.iseclab.org
https://play.google.com/store/apps/details?id=org.iseclab.andrubis
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