B S&P

The Bridge between Web Applications
and Mobile Platforms is Still Broken

Philipp Beer, Lorenzo Veronese, Marco Squarcina, Martina Lindorfer
TU Wien

Philipp Beer - May 26, 2022 - SecWeb 2022

Contributions

Malicious application Malicious website

@D

Android Custom Tab Ul flaw Android WebView Attack

Attack similar to XS state Achieves

inference and CSRF Stealthiness Accesses to user’'s microphone/camera

Related Work

A Large-Scale Study of Mobile Web App Security

Patrick Mutchler*, Adam DoupéT, John Mitchell*, Chris Kruegeli and Giovanni Vigna:c
*Stanford University
{pcm2d, mitchell} @stanford.edu
tArizona State University
doupe@asu.edu
iUniversity of California, Santa Barbara
{chris, vigna}@cs.ucsb.edu

Attacks on WebView in the Android System:

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin
Dept. of Electrical Engineering & Computer Science, Syracuse University
Syracuse, New York, USA

Abstract of the causes of vulnerabilities in mobile web apps but an

. . inadequate understanding of their true prevalence in the wild.
Mobile apps that use an embedded web browser, or mobile

web apps, make up 85% of the free apps on the Google
Play store. The security concerns for developing mobile web

In this work we study three vulnerabilities in mobile
web apps (loading untrusted web content, exposing stateful

ABSTRACT

WebView is an essential component in both An
platforms, enabling smartphone and tablet ap;
simple but powerful browser inside them. To :
ter interaction between apps and their embedd:
WebView provides a number of APIs, allowing
to invoke and be invoked by the JavaScript
the web pages, intercept their events, and
events. Using these features, apps can becon
“browsers” for their intended web application
in the Android market, 86 percent of the top 2
loaded apps in 10 diverse categories use Web\

The design of WebView changes the landscaj
especially from the security perspective. Two e
of the Web’s security infrastructure are weal
View and its APIs are used: the Trusted Co:
(TCB) at the client side, and the sandbox
plemented by browsers. As results, many a
launched either against apps or by them. Th
this paper is to present these attacks, analyz
mental causes, and discuss potential solutions

1. INTRODUCTION

Over the past two years, led by Apple anc
smartphone and tablet industry has seen treme
Currently, Apple’s iOS and Google’s Android |

A View To A Kill: WebView Exploitation

Extended Abstract

Matthias Neugschwandtner
Secure Systems Lab
Vienna University of Technology
Email: mneug @iseclab.org

Abstract—WebView is a technique to mingle web and native
applications for mobile devices. The fact that its main incentive
requires making data stored on, as well as the functionality of
mobile devices, directly accessible to active web content, is not
without consequences to security.

In this paper, we present a threat scenario that targets
WebView apps and show its practical applicability in a case study
of selected apps. We further show results of our examination of
over 287,000 apps in regard to WebView-related vulnerabilities.

I. INTRODUCTION

With the rise of Web 2.0 and its technologies, the web
shifted from static to dynamic content, enabling the advent
of social networks and peaking in the current state of web
apps that strive to rival their full-blown desktop counterparts.
Parallel to this development, another sector enjoys undimin-
ished growth: smartphones and their mobile device siblings,
i.e., tablets. Inevitably accompanied by these trends is the fact
that web content consumption shifts from desktop computers
to mobile devices.

On mobile devices, end-users expect functionality to be
delivered as a standalone app. In order to make the life for
developers easier, all major mobile platforms, such as Android,
i0S, Windows Phone and Blackberry introduced WebView.

R T T L L e R P e e

Martina Lindorfer
Secure Systems Lab
Vienna University of Technology
Email: mlindorfer @iseclab.org

Christian Platzer
Secure Systems Lab
Vienna University of Technolog
Email: cplatzer @iseclab.org

to a WebView-enabled app, she will have access to :

apps go beyond just those for developing traditiona’

or mobile apps. In this paper we develop scalab
for finding several classes of vulnerabilities in n
apps and analyze a large dataset of 998,286 mobile
representing a complete snapshot of all of the free 1
apps on the Google Play store as of June 2014. W
28% of the studied apps have at least one vulner
explore the severity of these vulnerabilities and ide
in the vulnerable apps. We find that severe vul
are present across the entire Android app ecosyste
popular apps and libraries. Finally, we offer sevei
to the Android APIs to mitigate these vulnerabiliti

I. INTRODUCTION

Mobile operating systems allow third-party de
create applications (“apps”) that run on a mobile d
ditionally, apps are developed using a language and
that targets a specific mobile operating system,

that have been exposed via JavaScript.

Previous work in this area is scarce, Luo et al. [1] pick up
attack vectors on WebView (as does [2]), but do not delve
into the actual exploitation of apps. Bhavani [3] discusses
an orthogonal problem on how a malicious app may harm
a benign web page via WebView. Finally, Fahl et al. reveal
orthogonal security problems in Android’s SSL handling [4].

In this paper, we discuss two realistic threat scenarios that
target WebView. We continue by presenting case studies on
apps that we have successfully exploited. Based on the insights
of the case studies, we conducted an analysis of over 287k
Android apps to check for WebView-related vulnerabilities.

II. THREAT SCENARIO

A fundamental requirement for exploiting a WebView app
is to gain control over the web content that is requested by
the app. To access the exposed APIs, the attacker needs to
inject JavaScript code that is subsequently executed by the
app. Depending on time and location of the manipulation, we
can distinguish between two possibilities:

Server compromise. If the attacker manages to manipulate
the content stored on the server, the attack leverage is very

N E wah navicatinn tn antrctad annce and laalina TTRT laadc

Bifocals: Analyzing WebView Vulnerabilities
in Android Applications

Erika Chin and David Wagner

University of California, Berkeley
{emc, daw } @cs.berkeley.edu

Abstract. WebViews allow Android developers to embed a webpage within an
application, seamlessly integrating native application code with HTML and Java-
Script web content. While this rich interaction simplifies developer support for
multiple platforms, it exposes applications to attack. In this paper, we explore
two WebView vulnerabilities: excess authorization, where malicious JavaScript
can invoke Android application code, and file-based cross-zone scripting, which
exposes a device’s file system to an attacker.

We build a tool, Bifocals, to detect these vulnerabilities and characterize the
prevalence of vulnerable code. We found 67 applications with WebView-related
vulnerabilities (11% of applications containing WebViews). Based on our find-
ings, we suggest a modification to WebView security policies that would protect
over 60% of the vulnerable applications with little burden on developers.

Keywords: Security, smartphones, mobile applications, static analysis.

1 Introduction

Mobile devices and platforms are a rapidly expanding, divergent marketplace. Appli-
cation developers are forced to contend with a multitude of Android mobile phones
and tablets; customized OS branches (e.g., Kindle Fire, Nook Tablet); and a score of
competing platforms including iOS and Windows Phone. Android developers are re-
sponding to the challenge of supporting multiple platforms through the use of Web-

Viawre whinh allaxs HITMT ~antant ta ha dicnlavad writhin an annlinatinn At a hich

Integrating Web Content in Mobile Apps

* Serve as in-app browsers

* Android
- WebView
- Custom Tab
- Trusted Web Activities -

Technology for people.

Android WebView

o |O S Host application

- WKWebView
- SFSafariViewController

Technology.for people.

I0S WKWebView IOS SFSafariViewController

Custom Tab

GET example.com

Native Application X example.com

‘open example.com®

* Report navigation callbacks to host
application
o AR ®

Time
Custom Tab
example.com

Native Application

e Custom Tabs share state with
browser

* Useful for e.g. SSO

Custom Tab Callback Principle

Custom Tab Attack

e Features enable attack similar to XS-

leak to infer user information < o

‘open example.com®

 Malicious app uses event sequence
to infer user data | AR ©

. o Custom Tab
Native Application

NAVIGATION _FINISHED

* [hree approaches
- Status code-based approach
- Redirection-based approach Custom Tab Callback Principle

- Timing-based approach

example.com

Status code-based approach

* Additional failed event triggered on 4xx/5xx response code and empty
response body

Malicious Application X example.com
"open example.com"

NAVIGATION STARTED GET example.com

@ Status code 4xx/5xx with
empty response body

Time “

Malicious Application NAVIGATION_FAILED

Custom Tab

NAVIGATION_FINISHED

Redirection-based approach

* Finished/failed event triggered for every JS/meta redirection

Time

Malicious Application

AR

Malicious Application

"open example.com"

NAVIGATION STARTED

NAVIGATION_FINISHED

NAVIGATION STARTED

NAVIGATION_FINISHED

X example.com

Custom Tab

—— > HTML/JS redirect ——

GET example.com

Status code 2xx/3xx*

GET example.com/redirected

Status code 2xx/3xx*

*or status code 4xx/5xx with
non-empty response body

Timing-based approach

e Measure time between NAVIGATION STARTED and
NAVIGATION FINISHED

Malicious Application X example.com

"open example.com"

@) NAVIGATION_STARTED GET example.com

Malicious Application

Status code 2xx/3xx*

Custom Tab
@NAVIGATION_FINISHED

*or status code 4xx/5xx with
non-empty response body

Stealthiness

T .o

X example.com

Custom Tab

example.com

on

Normal Custom Tab launch

Activity A

X
Activity B

example.com

AR

Activity B
Malicious Application

on

Hiding the Custom Tab

Callbacks

10

Mitigation

Activity A

X
Activity B

example.com

Malicious Application open example.com X

NAVIGATION_STARTED

Custom Tab Status code 2xx/3xx* “
NAVIGATION FINISHED
p. .\ : >

— > HTML/JS redirect ——
Malicious Application ATION_S D GET example.com/redirected ACthlty B
Malicious Application

GET example.com

Time

Status code 2xx/3xx*

*or status code 4xx/5xx with
non-empty response body

Android OS:
Restrict callbacks to Custom Tabs in the foreground
(prevents stealthy attack)

Custom Tab Provider:
Prevent callbacks on redirection
(prevents redirection-based attack)

11

Security Implications

* Opening website in Custom Tab is top-level navigation

* Cross-origin attack-targeted mitigations useless

Headers Headers
connection close connection close
® AI I OWS to by p aS S accept-language en-US,en;q=0.9,de-AT;q=0.8,de;q=0.7,en-AT;q... accept-language en-US,en;q=0.9,de-AT;q=0.8,de;q=0.7,en-AT;q...
accept-encoding gzip, deflate, br accept-encoding gzip, deflate, br
. . sec-fetch-dest document sec-fetch-dest document
- S a m e S I te CO O kl e S sec-fetch-user 71 sec-fetch-mode navigate
sec-fetch-mode navigate sec-fetch-site none
. . sec-fetch-site none accept text/html,application/xhtml+xml,application...
- F ra m I n g P rOteCt I O n accept text/html,application/xhtml+xml,application... user-agent Mozilla/5.@ (Linux; Android 11; AC2003) App...
user-agent Mozilla/5.@ (Linux; Android 11; AC2003) App... upgrade- 1
. . . upgrade- 1 insecure-requests
- C ro SS - O rl g I n — O p e n e r_ PO I I Cy insecure-requests sec-ch-ua- "Android"
sec-ch-ua- "Android" platform
platform sec-ch-ua-mobile 7?71
F t h M t d t sec-ch-ua-mobile 71 sec-ch-ua " Not A;Brand";v="99", "Chromium";v="101", ...
- e C e a a a sec-ch-ua " Not A;Brand";v="99", "Chromium";v="101", ... host webhook.site
host webhook.site content-length
content-length content-type

content-type

Chrome Chrome Custom Tab

12

Custom Tab CSRF

* 10.3% of state-changing requests still
implemented using GET

* ... sensitive state-changing POST
requests can be exploited by
changing to GET requests (e.g. IMDB,
PayPal and Meetup

e No detectable attack

* Allows to bypass even SameSite
strict cookies on Chrome!

Stefano Calzavara
Universita Ca’ Foscari Universita di Padova Universita Ca’ Foscari
calzavara@dais.unive.it conti@math.unipd.it focardi@dais.unive.it

Abstract—Cross-Site Request Forgery (CSRF) is one of the
oldest and simplest attacks on the Web, yet it is still effective
on many websites and it can lead to severe consequences, such

Mitch: A Machine Learning Approach to the
Black-Box Detection of CSRF Vulnerabilities

Mauro Conti Riccardo Focardi

based security testing framework based on a runtime monitor
implemented in the PHP interpreter. Although Deemon proved

to he verv effective on exictino anen-conrce weh annlicatinne

Alvise Rabitti Gabriele To
Universita Ca’ Foscari Universita di
alvise.rabitti@unive.it gtolomei @math.u:

The State of the SameSite: Studying the Usage,
Effectiveness, and Adequacy of SameSite Cookies

Soheil Khodayari, Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
soheil . khodayari @cispa.saarland, pellegrino@cispa.de

Abstract—Chromium-based browsers now restrict cookies’
scope to a same-site context by changing the default policy
for cookies, thus requiring developers to adapt their websites.
The extent of the adoption and effectiveness of the SameSite
policy has not been studied yet, and, in this paper, we undertake
one of the first evaluations of the state of the SameSite cookie
policy. We conducted a set of large-scale, longitudinal, both
automated and manual measurements of the Alexa top 1K,
10K, 100K, and 500K sites across the main rollout dates of the
SameSite policies, covering both SameSite usage and cross-site
functionality breakage caused by the new default policy. Also,
we performed an extensive evaluation of threats against the new
Lax-by-default policy’s effectiveness, looking at the adequacy of
the coverage provided by the Lax policy and bypass caused by
website developers’ mistakes.

Our study shows that the growth of sites using a SameSite
policy has slowed down considerably after the enforcement dates.
Then, the new Lax-by-default policy has affected about 19% of

the functionalities implemented via cross-site requests without
an evxnlicit SameSite nalicv mact af which are far anline adc

the SameSite attribute. The SameSite attribute introduces
three pre-defined same-site policies (None, Lax, and Strict)—
one of which is the new default policy—each defining a set of
cross-site requests contexts where the browser will not include
cookies. By switching to a same-site policy by default, the
hope is that XS attacks become old news [2, 12-17].

The radical change introduced by the SameSite attribute
is that browsers no longer include cookies in all cross-site
requests by default. As such a change can disrupt existing
websites and to help developers transition to the new policy,
Google rolled out SameSite’s features, spreading them over
a period of four years, starting from April 2016, where it
introduced the support for explicitly-defined SameSite poli-
cies, till July 2020 with the enforcement of the new default
policy. As the new policies will play a major role to the
security of the web platform, in this paper, we take a closer

~ ~ o~

Web View Attack 1/2

* Vulnerability in two popular WebView

plugins for Android frameworks ~

Applicati
- React Native WebView pplication
. _ -
- unity-webview |
\!J "X .
* Websites in WebView can access camera/] WebView
microphone, if B 3

- Application has permission
- Application grants WebView permission r

» Default: WebView permission denied

Application permission

WebView permission

14

Web View Attack 2/2

* Two plugins by default grant permission to WebView
» Attacker loads malicious website into WebView of vulnerable app
* Access to camera & microphone

* Mitigation
- Deny access by default
- Implement access control mechanism by plugin developers
- Show indicator when camera/microphone is used

15

Conclusion

* Custom Tab Attack
- Abuse Custom Tab for XS-like attacks (state inference & CSRF)
- Doesn’t trigger user-observable events
- Defeats existing mitigations for XS attacks

e Web View Attack

- Implementation flaw in Android framework plugins allows microphone/camera
access to web attacker

16

Thank you!
Questions?

@beerphilipp

Backup: Preliminary Evaluation

* Analysed top 250 downloaded free applications on Google Play (247
successfully)

e 85 (34%) use Custom Tabs
e 57 (23%) use Custom Tabs Callback

 Web View attack app vulnerability:

Permissions | RN WebView unity-webiew Others

N A 0 1 (< 1%) 113 (46%)
N A Y 0 0 28 (11%)
B A 2 (< 1%) 0 32 (13%)
[N 5 2%) 0 66 (27%)
" TRV 7 (3%) 0 126 (51%)

18

Backup: Custom Tab Attack Code

val callback = object : CustomTabsCallback() {
override fun onNavigationEvent(navigationEvent: Int, extras: Bundle?) {
when(navigationEvent) {
TAB_SHOWN -> {
startActivity(Intent(this, OverlayActivity::class.java))
s
NAVIGATION_STARTED -> {
onNavigationStarted()
s
NAVIGATION_FINISHED -> {
onLoadingFinished()
}
NAVIGATION_FAILED -> {
onLoadingFatiled()

}
else -> { }

val connection = object : CustomTabsServiceConnection() {
override fun onCustomTabsServiceConnected(name: ComponentName, client: CustomTabsClient) {
session = client.newSession(callback)
client.warmup(0)

}

override fun onServiceDisconnected(componentName: ComponentName?) { }

}

CustomTabsClient.bindCustomTabsService(context, packageName, connection)
val cctIntent: CustomTabsIntent.Builder = CustomTabsIntent.Builder(session).build()
cctIntent. launchUrl(context, Uri.parse(url))

