
Tarnhelm: Isolated, transparent and confidential 
execution of arbitrary code in ARM's TrustZone

Davide Quarta, Michele Ianni, Aravind Machiry, Yanick Fratantonio, Eric Gustafson, 
Davide Balzarotti, Martina Lindorfer, Giovanni Vigna, Christopher Kruegel



Overview

1. Introduction
2. Trusted Execution Environments
3. Design Goals
4. Approach
5. Implementation
6. Security Evaluation
7. Performance Evaluation
8. Conclusion

2



Introduction

3



Introduction

Applications running on a commodity operating system are usually deployed in an 
untrusted environment.

The user has full access to any of the application’s assets, including its code.

4



Introduction

In the absence of architectural support to protect an application’s code from 
unauthorized access, thus avoiding intellectual property loss and piracy of paid 
content, developers have to rely on:

● Code obfuscation
● Anti-tampering and Anti-debugging techniques
● Different distribution strategies (e.g., in-app purchases)

5



“All intellectual property protection technologies will be cracked at some point
- it’s just a matter of time”

- Microsoft

6



Can we achieve Code Confidentiality
using Trusted Execution Environments?

7



Introduction

● TEEs operate on a higher level of privilege, they are only designed to 
execute trusted code signed by device vendors

● TEEs are resource-constrained and not designed to execute full-fledged 
applications

We address these challenges in Tarnhelm, which transparently executes 
individual code components in TrustZone and guarantees code confidentiality
through isolation, without sacrificing overall system security.

8



Trusted Execution Environments

9



Trusted Execution Environment (TEE)

● Hardware-isolated execution environment (e.g., ARM TrustZone)

○ Non-secure world

■ Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)

○ Secure world

■ Higher privilege, can access everything

■ Trusted OS and trusted applications (TAs)

10



ARM TrustZone

Picture reused from arm.com 11



Limitations of Existing TEEs

Developers must

● manually partition an application’s code into a secure and non-secure part;

● define interfaces between the two parts;

● modify the secure code part to be compatible with the TEE.

12



Design Goals

13



Design Goals

● Code confidentiality

● Transparent forwarding

● Transparent integration

● Limited attack surface

● Minimal overhead

14



Approach

15



Deployment

16



Code Partitioning

17



Secure Code Retrieval and Loading

18



Memory Management

19



System Call Forwarding

20



Transparent World Switch

21



Implementation

22



Implementation

23

We implemented Tarnhelm based on the default OP-TEE 2.3.0 32-bit QEMU 
configuration. We added:

● 3.11K lines of code (LOC) to the TCB
● 1,415 LOC to the OP-TEE OS
● 566 LOC to the Linux abort handler and include files
● 1,129 LOC to the OP-TEE Linux driver



Transparent Execution

24



Control-Flow Integrity

25



Security Evaluation

26



Attacks on Code Confidentiality

27

● Instruction inference attacks

● Control-flow redirection attacks

● Data-only attacks

● Iago attacks

● Blind ROP

● Vulnerabilities in the invisible code

● Compromised TA

● Emulated TEE



Performance Evaluation

28



Performance Evaluation

29

We evaluated Tarnhelm on QEMU emulating an ARMv7 Cortex-A15 with soft-
mmu, running on an Intel Core 8-core i7-930 CPU (2.80GHz) desktop machine 
with 12GB of memory.



Microbenchmark of Tarnhelm’s Individual Components

30



Overhead of the Transparent World Switch

31



LMBench Results

32



Macro Experiment with a Real-World Game

33



Conclusion

34



Conclusion

35

● Tarnhelm, an approach that offers a new powerful primitive: code 
confidentiality

● Transparent execution of parts of an unmodified application in different 
isolated execution environments

● Limited additions to the TCB
● Resiliency of Tarnhelm against potential attacks
● Reasonable performance overhead
● Open source, available at https://github.com/ucsb-seclab/invisible-code

https://github.com/ucsb-seclab/invisible-code


Questions?

36


