Tarnhelm: Isolated, transparent and confid
execution of arbitrary code in ARM's TrustZ

Davide Quarta, Michele lanni, Aravind Machiry, Yanick Fratantonio, Eric Gustafson,
Davide Balzarotti, Martina Lindorfer, Giovanni Vigna, Christopher Kruegel

— 4

s s PURDUE TaLos UCSB

T S A e S CALABRIA UNIVERSIT Y. stfuat]ie
cIsco SECLAB

m vmware

Overview

©NOUAWN S

Introduction

Trusted Execution Environments
Design Goals

Approach

Implementation

Security Evaluation
Performance Evaluation
Conclusion

Introduction

Introduction

Applications running on a commodity operating system are usually deployed in an
untrusted environment.

The user has full access to any of the application’s assets, including its code.

Introduction

In the absence of architectural support to protect an application’s code from
unauthorized access, thus avoiding intellectual property loss and piracy of paid

content, developers have to rely on:

® Code obfuscation
® Anti-tampering and Anti-debugging techniques
@ Different distribution strategies (e.g., in-app purchases)

“All intellectual property protection technologies will be cracked at some point
- it’s just a matter of time”
- Microsoft

Can we achieve Code Confidentiality
using Trusted Execution Environments?

Introduction

® TEEs operate on a higher level of privilege, they are only designed to
execute trusted code signed by device vendors

® TEEs are resource-constrained and not designed to execute full-fledged
applications

We address these challenges in Tarnhelm, which transparently executes
individual code components in TrustZone and guarantees code confidentiality

through isolation, without sacrificing overall system security.

Trusted Execution Environments

Trusted Execution Environment (TEE)

® Hardware-isolated execution environment (e.g., ARM TrustZone)
o Non-secure world
B Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)
o Secure world
B Higher privilege, can access everything

B Trusted OS and trusted applications (TAs)

10

ARM TrustZone

. Trusted region

Picture reused from arm.com

AMBA 5 AHBS Interconnect

Non-Trusted
Peripheral A

- Non-trusted region

Trusted
Peripheral B

1"

Limitations of Existing TEEs

Developers must

® manually partition an application’s code into a secure and non-secure part;

® define interfaces between the two parts;

® modify the secure code part to be compatible with the TEE.

12

Design Goals

Design Goals

Code confidentiality
Transparent forwarding
Transparent integration

Limited attack surface

Minimal overhead

14

Approach

Deployment

Normal

Secure
World

World

~0

»,,

<

|i I
Device

«@ Device public key
«0 Device private key

o
©

Y

=
A

Trusted Third
Party

*® Third party public key
< Third party private key

16

Code Partitioning

1 #include<stdio. h>
2 int curr_idx = 0;

3
4

6 increment_counter(data);

7 // use data to perform some computation
8 return data;

s }

10 void increment_counter(struct object *data){
1 if(data != NULL){

12 data->counter += curr_idx;

13 curr_idx++;

14 }

15}

16 int main(){

17 struct object curr_data;

18 e

19 get_processed_data(curr_data);

20 cese

21}

17

Secure Code Retrieval and Loading

Code
Partitioning

Normal World

Secure
Code
Retrieval

Secure

Secure World

Code
Loading

SPO
Josn

SPON
Josintedng

18

Memory Management

Normal World

. text
.data
.invisible

stack

0x0400 | 0x1000 _

0x0500 | 0x1100 0x0500 | 0x1100

0x0600 | OxE100 0x0600 | OxE100

0x7F00 | 0x3000 O0x7F00 | 0x3000
VA PA VA PA

PIOM 84N23S

19

System Call Forwarding

Normal World Secure World

Syscall Interrupt
Handler Handler

execute()

Transparent World Switch

Normal World Secure World
—p| £foo:
(3) =
o)
e
)
RPC Abort 2 3
Handler Handler -

Abort
Handler

resume()

Implementation

22

Implementation

We implemented Tarnhelm based on the default OP-TEE 2.3.0 32-bit QEMU
configuration. We added:

® 3.11K lines of code (LOC) to the TCB

1,415 LOC to the OP-TEE OS

566 LOC to the Linux abort handler and include files
1,129 LOC to the OP-TEE Linux driver

Transparent Execution

|

Normal World ‘ | Secure World

] USR HABT/SVC\ ABT/SVC| | USR |

pref. abt

Start execution

sSmc: . exec

RPC pref. abt
loop

Mrpc: fwd_abort

< break loop

pref. abt

< abt_restore

Resume execution

rpc:handle
----------- >

24

Control-Flow Integrity

|From/To— Untrusted OS Trusted OS
Untrusted OS ret N/A Verify and pop the return address
from the shadow stack
call N/A Verify function entry point and push
return address on the shadow stack
Trusted OS ret Pop shadow stack Verify return location to be valid
call Push return address on the shadow stack Verify function entry point for indi-

rect calls

25

Security Evaluation

Attacks on Code Confidentiality

Instruction inference attacks

Control-flow redirection attacks
Data-only attacks

lago attacks

Blind ROP

Vulnerabilities in the invisible code

Compromised TA

Emulated TEE

27
D

Performance Evaluation

28

Performance Evaluation

We evaluated Tarnhelm on QEMU emulating an ARMv7 Cortex-A15 with soft-
mmu, running on an Intel Core 8-core i7-930 CPU (2.80GHz) desktop machine

with 12GB of memory.

29

Microbenchmark of Tarnhelm’s Individual Components

Component Time
Invisible code initialization 0.316s
Invisible code cleanup 0.44ms
System call fForwarding 116.88us
Data mapping (secure world)

Data mapping (normal world) 231.337ps
IW-CFl indirect call (trusted OS) 0.111ps
IW-CFI return (trusted OS) 19.431us

30

Overhead of the Transparent World Switch

Direction w/ DM+IWCFI w/ DM fwd w/o DM fwd

sw =Y Nw S sw 495.529us 494.539us 152.093ps

NwW =5, sw 5 Nw 505.348us 497.549us 151.298ps
id-call

sw 0 Nw 5 sw 514.903ps N/A N/A

31

LMBench Results

absolute overhead (x)

(o)}
o

N
o

N
o

o

w/data map fwd&CFl
w/data map fwd
w/odata map fwd w/CFl
w/o data map fwd

null syscall read write stat fstat open-close select sig.h.

32

Macro Experiment with a Real-World Game

divide

wdata map fwd w/CFI
w/data map fwd

w/odata map fwd&CFl
w/o data map fwd

10 20 30 40 50 60 70

——— clear tile bonus
—— divider bonus

——

2 4 6 8

33

Conclusion

34

Conclusion

Tarnhelm, an approach that offers a new powerful primitive: code
confidentiality

Transparent execution of parts of an unmodified application in different
isolated execution environments

Limited additions to the TCB

Resiliency of Tarnhelm against potential attacks

Reasonable performance overhead

Open source, available at https://github.com/ucsb-seclab/invisible-code

35

https://github.com/ucsb-seclab/invisible-code

Questions?

36

