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Introduction

Applications running on a commodity operating system are usually deployed in an 
untrusted environment.

The user has full access to any of the application’s assets, including its code.
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Introduction

In the absence of architectural support to protect an application’s code from 
unauthorized access, thus avoiding intellectual property loss and piracy of paid 
content, developers have to rely on:

● Code obfuscation
● Anti-tampering and Anti-debugging techniques
● Different distribution strategies (e.g., in-app purchases)

5



“All intellectual property protection technologies will be cracked at some point
- it’s just a matter of time”

- Microsoft
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Can we achieve Code Confidentiality
using Trusted Execution Environments?
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Introduction

● TEEs operate on a higher level of privilege, they are only designed to 
execute trusted code signed by device vendors

● TEEs are resource-constrained and not designed to execute full-fledged 
applications

We address these challenges in Tarnhelm, which transparently executes 
individual code components in TrustZone and guarantees code confidentiality
through isolation, without sacrificing overall system security.
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Trusted Execution Environments
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Trusted Execution Environment (TEE)

● Hardware-isolated execution environment (e.g., ARM TrustZone)

○ Non-secure world

■ Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)

○ Secure world

■ Higher privilege, can access everything

■ Trusted OS and trusted applications (TAs)
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ARM TrustZone

Picture reused from arm.com 11



Limitations of Existing TEEs

Developers must

● manually partition an application’s code into a secure and non-secure part;

● define interfaces between the two parts;

● modify the secure code part to be compatible with the TEE.
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Design Goals
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Design Goals

● Code confidentiality

● Transparent forwarding

● Transparent integration

● Limited attack surface

● Minimal overhead
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Approach
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Deployment
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Code Partitioning
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Secure Code Retrieval and Loading
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Memory Management
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System Call Forwarding
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Transparent World Switch
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Implementation
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Implementation
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We implemented Tarnhelm based on the default OP-TEE 2.3.0 32-bit QEMU 
configuration. We added:

● 3.11K lines of code (LOC) to the TCB
● 1,415 LOC to the OP-TEE OS
● 566 LOC to the Linux abort handler and include files
● 1,129 LOC to the OP-TEE Linux driver



Transparent Execution
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Control-Flow Integrity
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Security Evaluation
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Attacks on Code Confidentiality
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● Instruction inference attacks

● Control-flow redirection attacks

● Data-only attacks

● Iago attacks

● Blind ROP

● Vulnerabilities in the invisible code

● Compromised TA

● Emulated TEE



Performance Evaluation
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Performance Evaluation
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We evaluated Tarnhelm on QEMU emulating an ARMv7 Cortex-A15 with soft-
mmu, running on an Intel Core 8-core i7-930 CPU (2.80GHz) desktop machine 
with 12GB of memory.



Microbenchmark of Tarnhelm’s Individual Components
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Overhead of the Transparent World Switch
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LMBench Results
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Macro Experiment with a Real-World Game
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Conclusion
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Conclusion
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● Tarnhelm, an approach that offers a new powerful primitive: code 
confidentiality

● Transparent execution of parts of an unmodified application in different 
isolated execution environments

● Limited additions to the TCB
● Resiliency of Tarnhelm against potential attacks
● Reasonable performance overhead
● Open source, available at https://github.com/ucsb-seclab/invisible-code

https://github.com/ucsb-seclab/invisible-code


Questions?
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