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Abstract—The rising complexity of Android apps makes com-
prehensive dynamic testing infeasible, especially for third-party
apps. Knowing which methods are exercised by real users
typically requires costly user studies or access to usage telemetry.
We show that Android’s compilation profiles, specifically Cloud
Profiles collected by the Google Play Store, offer a readily
available, underutilized source of such information. These opera-
tional profiles aggregate which methods are commonly executed
across users and guide ahead-of-time compilation during app
installation. We provide the first in-depth characterization of
Baseline Profiles and Cloud Profiles and show that over 99.89%
of the top 1,000 apps include usage-derived cloud profiles.

Based on this insight, we introduce profile coverage, a novel
metric that measures how well dynamic testing exercises the
methods real users interact with. This metric builds on the idea
of operational coverage and enables a more holistic evaluation
of automated test input generators. To enable profile coverage
measurements, we develop a lightweight tracer, PROFTRACE,
based on Linux kernel uprobes that requires no app or system
modifications. We demonstrate its utility by comparing three
tools and a no-interaction baseline on 50 popular apps, showing
that profile coverage reveals differences that traditional code
coverage misses. For instance, in Candy Crush, automated testing
achieves only 2.22% method coverage, but 21.39% profile
coverage—indicating better alignment with user behavior than
traditional code coverage would suggest.

I. INTRODUCTION

Dynamic analysis of Android apps plays an important role
in both quality assurance and security assessments. From
developers trying to detect bugs and crashes [54, 65, 76],
to researchers studying entire app ecosystems to detect and
characterize malware [10, 45, 46] and assessing different
aspects of app privacy [38, 56, 60–62, 66, 75], automating
the interaction with apps is a task with many applications.

Limitations of Traditional Coverage Metrics. As app com-
plexity increases, test input generation techniques are typically
evaluated using code coverage metrics, which report the share
of code executed during testing. These metrics range in
granularity from instruction-level to method, class, or activity
coverage. However, due to time constraints and diminishing
returns [14, 50], exhaustive coverage is rarely pursued in
practice. Even manual efforts fall short: Akinotcho et al. [2]
show that human testers typically explore no more than 30 %
of an app’s code. Traditional coverage helps answer whether
testing exercises “enough” code, but leaves open the question
of whether it is the right code. Not all code is equally

important: some methods are critical to core functionality,
while others are rarely executed in real-world usage. Thus,
traditional coverage cannot distinguish between coverage of
highly relevant vs. rarely used parts of the app.

Understanding Profiles. To address this gap, we turn to
Android’s compilation profiles, which represent actual usage
patterns at scale. In particular, Cloud Profiles are aggregated
from telemetry data collected by the Google Play Store during
real-world use and are used by the Android Runtime (ART)
to optimize app startup. Despite being widely deployed, they
remain underdocumented. We begin by answering RQ1: What
profiles exist, how are they created, and for what are they
used?, based on a deep dive into Android’s source code.

We further ask and answer RQ2: How prevalent are Base-
line Profiles and Cloud Profiles among popular apps on
the Google Play Store?, and RQ3: Do developer-supplied
Baseline Profiles differ from usage-derived Cloud Profiles?
To this end, we collect over 43,056 APKs and 43,009 Cloud
Profiles from the top 1,000 apps. We show that profiles are
widely available and often diverge, underlining the value of
metrics based on telemetry for testing and optimization.

Profile Coverage for Testing Effectiveness. We propose
profile coverage as a novel metric for evaluating dynamic
testing techniques. It measures the proportion of methods
listed in an app’s Cloud Profile exercised during testing. This
approach builds on the concept of operational coverage [53],
which evaluates testing against actual usage behavior. Unlike
operational coverage, however, profile coverage does not re-
quire app-specific instrumentation or large-scale user studies;
it leverages usage data already collected and curated via the
Google Play Store. Profile coverage provides a more grounded
and holistic assessment of test effectiveness by contextualiz-
ing which parts of an app are covered. This perspective is
especially valuable when analyzing third-party apps, where the
developer’s intent or internal structure is often unavailable.

Beyond large-scale evaluation, profile coverage is also
directly useful for developers. Since it reflects how well
tests align with real-world usage, it can help gauge testing
effectiveness in individual apps, particularly when adding new
features or maintaining legacy code. Because Cloud Profiles
are versioned and updated over time, profile coverage can also
be incorporated into continuous integration (CI) pipelines to
detect regressions in behavioral coverage across releases.
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To illustrate, consider this example of testing Candy Crush
with Android’s UI/Application Exerciser Monkey [35] (“Mon-
key” for short): It yields just 2.22% traditional method cov-
erage, which might suggest a weak test. But profile coverage
is 21.39%, indicating that the most-used features are better
tested. With reversed results, testing might appear thorough,
but it would miss the features people use the most.

Enabling Profile Coverage Measurement. To investigate
whether profile coverage can differentiate testing approaches,
we ask RQ4: Can profile coverage be used to measure differ-
ences in dynamic testing success? We compare the profile and
code coverage of three input generation tools: Monkey [35],
DroidBot [42], and Fastbot2 [51] on 50 apps. Our findings
show that profile coverage can reveal differences in tool
behavior that traditional code coverage fails to surface: For
the aforementioned Candy Crush, method coverage increases
by 74.59% when running Fastbot2 [51] compared to Monkey,
from 22.52% to 39.33%. Profile coverage, however, drops
significantly, from 21.39% to just 3.13%. This oversight could
undermine the value of any behavioral or security insights
derived from the test. Similarly, in Microsoft Authenticator,
code coverage increases by 44.56% but profile coverage only
by 3.39%. These examples highlight why profile coverage
matters: it provides an additional lens to interpret coverage
metrics, helping both researchers and practitioners better as-
sess test effectiveness, especially when traditional coverage
numbers are ambiguous or misleading.

To make profile coverage measurable, we develop PROF-
TRACE, a lightweight method tracer for Android based on
ART’s compilation model and Linux’s uprobe infrastructure.
Unlike traditional tools, it does not require repackaging or
system modification and runs on both emulators and hardware
with root access. PROFTRACE successfully measures execu-
tion on all 827 candidate apps, while ACVTool [59], used for
method coverage, only works on 114 (13.78%).

In summary, we make the following contributions:

• We characterize compilation profiles and study their
prevalence, showing that virtually all popular apps
have Cloud Profiles, i.e., aggregated usage statistics per
app version. We further investigate differences between
developer-provided Baseline Profiles and Cloud Profiles.

• We propose profile coverage as a metric for developers
and researchers to measure how dynamic testing ap-
proaches approximate real users’ interactions with an app.

• We develop PROFTRACE, an open-source method tracer
based on Linux kernel uprobes that allows us to measure
profile coverage without modifying and repackaging the
app under test, or a custom Android system.

• We measure profile coverage with PROFTRACE for three
UI input generators and compare it to code coverage. We
show that it can be used to find differences in dynamic
testing that method coverage alone would not uncover.

• We discuss additional future applications of Cloud Pro-
files, from guiding dynamic testing and fuzzing to pro-
viding developers insights into their app’s usage patterns.

Artifacts. To enable the reproducibility of our results and
to foster research in this area, we provide our source code
for profile collection as well as PROFTRACE at https://github.
com/SecPriv/android-profile-tracing. We provide our dataset
of apps with their corresponding profiles upon request.

II. ANDROID COMPILATION PROFILES

A. Background: Android Apps and Runtime

Android apps are distributed in the Android Package file
(APK) format, which is a signed zip archive that must include
the AndroidManifest.xml file that stores metadata, such
as the app name and app ID (also called package name). The
latter uniquely identifies an app on a device and on the Google
Play Store. An APK can also contain additional files that may
be required for running an app, such as native libraries, images,
and data. Originally, apps were distributed as single APKs,
with resources for multiple device configurations packed into
the same file. However, devices cannot use resources they are
not compatible with, like high-resolution images on a low-
resolution device or languages that are not activated on the
device. That is why developers are now required to upload new
apps as App Bundles, which contain all code and resources but
can be bigger than the maximum APK size of 150MB in the
Google Play Store, which in turn creates appropriate variant
APKs for different target architectures. These additional APKs
are called “split APKs” and are served to users to avoid
sending unnecessary files to devices that cannot use them.

The actual code of an app is stored in one or more
Dalvik executable (DEX) files within the APK, within which
each string, field, class, and method has a numeric identifier.
Because the number of identifiers is limited per DEX file to
65,536, complex apps have more than one DEX file. To iden-
tify a method uniquely per app, we refer to the combination
of DEX file and method identifier as method ID.

The idea of using a list of method IDs for partial ahead-
of-time compilation on Android was first introduced by Lim
et al. [44] in 2012. It was not adopted in Android until
version 7 (Nougat, released in 2016) as compilation profiles.
At this point the Android Runtime (ART) executed app code
by either compiling the Dalvik code to native code ahead-
of-time (AOT), just-in-time (JIT), or by interpreting it. The
system decides this on a per-method basis [12, 25]. AOT
compilation of important methods happens during installation
and downtime, that is, when the phone is idle.

Other software, such as Mozilla Firefox and Google
Chrome, also uses compilation profiles for profile-guided op-
timizations [70], i.e., to heavily optimize code that is executed
more frequently. But Android is currently the only platform
where this is used by the app runtime itself, and for which a
large number of profiles are available for apps from a variety of
different developers. We empirically show this in Section III.

B. Compilation Profiles

Compilation profiles have received limited attention from
the research community. To the best of our knowledge, related
work so far has only explored the optimization of their
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generation: Visochan et al. [71] investigated how to generate
useful profiles using machine learning, but did not cover the
current implementation of all the different kinds of compi-
lation profiles on Android. One of the reasons might be that
their documentation has been sparse: In our quest to investigate
profile generation, usage, and general characteristics, only the
Android source code provided definitive answers to some
questions, although the documentation keeps expanding.

Compilation profiles are binary files that start with the
magic header ’pro\0’ followed by their version number. Until
Android 11 (R, released in 2020) version 010 was used, since
Android 12 (S, released in 2021), up to and including the latest
Android 16 as of September 2025, version 015 is used [5, 28].
They are used not only for regular apps but also for system
components such as code found in the “bootclasspath” [29].

Each compilation profile contains three lists of method
IDs per DEX file, which contain the following categories of
methods (also see Listing 1 for an example Cloud Profile for
the Signal app1 we extracted using profman):

• hot methods are hot code in the usual sense: These
methods get called most often, so compiling them AOT
should result in the greatest speedup. By default, the
ART will always compile them AOT for regular apps.
Thresholds for when a method is considered hot can be
configured [6, 32] when building an Android system.

• startup methods are involved in getting an app from
not running to showing the first screen. These are also
compiled AOT by default unless the system has been built
with the “LowMemoryMode” setting [4]. In that case, the
code is either compiled JIT or interpreted.

• post-startup methods run after the first screen is shown to
the user, but before the main functionality of the app is
reached. This could mean, for example, methods related
to login or methods that load resources while a loading
screen is shown. In practice, this is not used for AOT
compilation on Android 10 through 15.

Figure 1 provides an overview of the path of compilation
profiles throughout an app’s lifecycle, from the development of
an app, to the distribution through the Google Play Store, and
to its execution on users’ devices. Depending on how profiles
are generated, we can distinguish between the following types:
Baseline Profiles, also referred to as “Developer Profiles,”
are created by the app developer and bundled in the APK at
assets/dexopt/baseline.prof [28]. While they can
be hand-written lists of methods that should be included, these
lists can also be automatically generated with Android Studio
tools that use the automated testing framework to run a series
of developer-defined commands and collect statistics on the
called methods. This only works if the app source code is
available, since Android Studio uses a unit-testing library to
track method calls and not the ART, and requires the app to be
marked as debuggable. Baseline Profiles can also be generated

1Signal Private Messenger ( version 7.40.2) https://play.google.com/store/
apps/details?id=org.thoughtcrime.securesms&hl=en

=== Dex files ===
/<path-to>/base.apk [checksum=1c7b6436]
<...>
=== profile ===
ProfileInfo [015]

classes.dex [index=0] [checksum=1c7b6436]
hot methods:

void org.thoughtcrime.securesms.MainActivity.
onCreate(android.os.Bundle, boolean)[],

void org.thoughtcrime.securesms.conversation.v2.
ConversationActivity.onCreate(android.os.Bundle
, boolean)[],

<...>
startup methods:

void org.thoughtcrime.securesms.MainActivity.
onCreate(android.os.Bundle, boolean),

void org.thoughtcrime.securesms.conversation.v2.
ConversationActivity.onCreate(android.os.Bundle
, boolean),

<...>
post startup methods:
classes:

org.thoughtcrime.securesms.MainActivity,
org.thoughtcrime.securesms.conversation.v2.

ConversationActivity,
<...>

<...>

Listing 1: Example profman output for the Cloud Profile
for the Signal app. If the APK is available, DEX method IDs
can be resolved to classnames as shown here. The brackets for
hot methods may contain additional information to optimize
megamorphic functions. In this case the Cloud Profile does
not contain anything in the post-startup methods list.

for libraries and will be merged into the app’s baseline profile
during compilation. Note that creating Baseline Profiles is
optional, and we investigate their prevalence in Section III.
Cloud Profiles, which more accurately could be referred to as
“Aggregated Usage Profiles” (see Listing 1 for an example),
are based on usage patterns observed by Google and dis-
tributed alongside apps installed through the Google Play Store
in a DEX metadata (DM) file as primary.prof. To collect
the usage data for these profiles, any app installed through
the Google Play Store is profiled during its execution on the
users’ phones by default, unless users choose to disable “App
Install Optimizations” in their settings with a link to “Learn
more.” It leads to a Google support page [34] explaining
that they collect information on “which parts of an app you
use the first time you open it after installation” and clarify
that no content, such as usernames and uploaded data, is
collected. How the usage data from individuals is aggregated
is not publicly documented. In Section III we show that Cloud
Profiles are available for virtually all popular apps.
Current Profiles collect the run-time information of an app
while it is being used on a device. If an Android device has
multiple users set up, Android creates separate profiles for an
app for each user [7]. After a user installs an app, this profile
is empty, and it gets populated with methods during execution
that are considered “warm” by the runtime. Typically, this
means they have been compiled JIT and were called often
enough. The exact threshold when this happens depends on
an internal counter that can be configured for the system and
represents “number of calls, backward branches, and other
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Fig. 1: Lifecycle and relationship of compilation profiles.
Baseline Profiles are created by developers and contained in
the APK (.apk), while Cloud Profiles (primary.prof)
are created by the Google Play Store based on data collected
from its users and are distributed in an extra DEX metadata
file (.dm). Current Profiles represent the usage patterns of
individual users on a device that are fed back into Google’s
data collection. All these, if available, are merged into the
Reference Profile used by the ART to AOT-compile app code.
We refer to the Current Profile as current.prof and the
Reference Profile as reference.prof, because both files
are originally also named primary.prof.

factors” [32]. Because the default values are too conservative
for benchmarking [3, 8], these profiles are not suitable to
collect a definitive list of executed methods.

Reference Profiles combine an app’s Baseline Profile, Cloud
Profile, and Current Profile. Android automatically merges
the available profiles and passes them to the ART’s AOT
compiler [9]. During installation is not the only time profile-
guided compilation happens on Android. As mentioned, the
usage of an app creates the Current Profile, which changes
over time and is the main input to “background dexopt” [27].
This task runs once a day and combines an app’s available
Current Profile, Cloud Profile, and Baseline Profile into the
Reference Profile to update the odex (“optimized DEX”) file,
which contains the AOT compiled binary code (an “Of Ahead
Time” or OAT file for short). Internally, dex2oat performs
the compilation as part of the background task, during app
installation, as well as app execution for JIT compilation [9,
12, 13], but it can also be invoked as a command-line tool
manually on an app or through the package manager pm.

Boot Profiles are not used to optimize regular apps. In-
stead, they use the profile information from apps to opti-
mize “system-level components such as system server and
boot classpath” [29]. The Android command-line program

package can be used to aggregate a boot profile from
all individual app profiles of the boot image. However, we
consider them out of scope for the remainder of this work and
focus on individual apps’ compilation profiles instead.

Startup Profiles are used during the creation of DEX files [31].
Their goal is to bundle Dalvik methods used for starting an
app into the first DEX file that the ART loads, avoiding delays
in startup caused by loading multiple files into memory. They
do not influence which methods are compiled AOT by the
ART and are only available to the app developer.

RQ1: What profiles exist, how are they created, and
for what are they used?
While the Reference Profile is a combination of all profiles
for AOT compiling an app to optimize its performance, the
Baseline Profile and Cloud Profile are availalble at install
time. The former is part of the APK and created by the
developer, the latter is aggregated by the Google Play Store
from Current Profiles of real users interacting with the app.

III. PREVALENCE OF COMPILATION PROFILES

Having now understood what kinds of profiles an app can
have, the next question is which kinds of profiles apps actually
do have and use. To answer this question, we collect a dataset
of the most popular apps on the Google Play Store and collect
their profiles daily for over seven weeks.

A. Profile and App Collection

Extending our work on app collection that had issues with
exhaustive app discovery [67], we first collected the Google
Play Store’s sitemap.xml, which provides a list of all available
app IDs. We then downloaded each apps’ metadata and sorted
it by number of downloads to select the most popular 1, 000
apps on March 28th, 2025. Each of the apps has at least
100 million downloads, with an average of 461.9 million total
downloads. Over the course of seven weeks (March 31st – May
20th, 2025) we attempted to download each app on this list
using a patched version of apkeep [20]. Our patch enabled us
to download the Cloud Profiles without relying on a hardware
phone, as well as all necessary split APKs in a configuration
that allows us to run them on our phones later on. We open-
source this patch to upstream this functionality.

For some apps, the download failed for various reasons: The
most common ones were that apps were removed between the
creation of our initial list, or that they were not available in our
geographic region, or not supported on the target device we
specified. In case of network errors, we did not attempt to re-
download an app, which sometimes led to missing downloads
as well. These problems affected a total of 15.58% of our
downloads. After this collection, we ended up with a total of
43,056 base APKs that are unique per app ID and day, 81,509
total split APKs, and 43,056 DEX metadata files.

As discussed in Section II, the compilation profiles are
distributed as binary files, which we extracted from the APKs
and DEX metadata files, respectively. To parse them we used
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profman, an Android system binary to create a human-
readable version of the compilation profiles. By default, it only
prints the method IDs, but can also be instructed to resolve and
print the method names from the relevant DEX file instead.

B. Profile Availability and Updates

In our dataset we found that only about 85.93% of top
(i.e., most popular) apps had a Baseline Profile, but virtually
all apps had Cloud Profiles available: We extracted 36,997
(85.93%) Baseline Profiles from APKs, and 43,009 (99.89%)
Cloud Profiles from the DEX metadata files.

According to Google’s documentation, it takes between
“hours and days” [30] for Cloud Profiles to be available. For
the apps in our dataset, the actual time seems to be lower. Only
47 (0.11%) app downloads did not come with a Cloud Profile.
However, as the Google Play Store supports staged rollouts,
it is possible that profiles are collected from a smaller group
of users first, and a Cloud Profile is already available when
more users receive the update.

RQ2: How prevalent are Baseline Profiles and Cloud
Profiles among popular apps on the Google Play Store?
While around 85% of the top 1,000 most popular apps
on the Google Play Store use developer-provided Baseline
Profiles, virtually all (99.89%) have Cloud Profiles.

We further investigated whether Cloud Profiles change
over time, as this can influence any further comparison with
Baseline Profiles. To determine this, we created a mapping
of app ID and app version code combination (2,952 unique
app version pairs) to the set of unique hashed Cloud Profiles
contents. This allowed us to observe the evolution of app
versions over time and to query whether any app version had
multiple profiles, which was the case for 83 (2.81%) app
versions. We manually investigated 6 apps and found that in
each case, the Cloud Profile changes only one day after a new
version was released. Suspecting that after an update, when
no Cloud Profile is available, the Google Play Store might use
the Baseline Profile as Cloud Profile, we also compared those
on the days of an app update and the following day. In the
cases of an app version having more than one unique Cloud
Profile, we found the profile served by the Google Play Store
on the same day we observed a new app version indeed to be
more similar to the Baseline Profile, before being updated. We
assume that until enough user data is aggregated, the Google
Play Store uses the Baseline Profile, if available, as a basis
for the Cloud Profile. Once an aggregated Cloud Profile has
been created, we saw no indication of it changing over time.

C. Baseline vs. Cloud Profiles

To explore the relationship between profile types, we se-
lected data collected on a single day (May 7th, 2025). For each
app, we collected the combined set of unique hot, startup, and
post-startup method IDs in each available profile. We then
calculated the number of methods in both profiles, unique
to the Baseline Profile, and unique to the Cloud Profile. We
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Fig. 2: Methods in Baseline Profiles and Cloud Profiles,
normalized by the total number of methods in an app. We
merged the hot/startup/post-startup methods of each profile,
and computed the overlap and unique method IDs per profile
type. The dashed lines indicate the median. We observe that
a Cloud Profile is not just a superset of methods declared
in a Baseline Profile: For most apps, the Google Play Store
removes or replaces a large percentage of method IDs.

normalized this by the overall number of methods in an app,
which we counted using the Android SDK’s apkanalyzer.

Figure 2 shows our results. While all of the 827 apps had
a Cloud Profile, only 708 (85.61%) had a Baseline Profile as
well. If both were available, their content was largely similar,
with generally more methods in the Cloud Profiles. However,
the aggregated profiles were not just a superset of the Baseline
Profiles, with Cloud Profiles often removing methods that were
placed in the profiles by the developers.

Baseline Profiles alone are not enough to describe typical
user interactions for two reasons. First, even for popular apps,
they are often not present, while Cloud Profiles are available
for virtually all apps. Second, the difference to Cloud Profiles
suggests that the “common user interactions” developers are
encouraged to capture in their profiles [28] do not always
represent the actual user behavior as observed by Google.
Investigating the difference between these profiles could help
developers gain a deeper understanding of how their user base
is interacting with their apps and to make better decisions
about which methods to include in their Baseline Profiles.

RQ3: Are aggregated Cloud Profiles diverging from
developer-supplied Baseline Profiles?
Cloud Profiles typically contain more methods than Base-
line Profiles, but the overlap can be significant. The meth-
ods in Cloud Profiles, however, are not a strict superset of
the methods in developer-provided Baseline Profiles. This
indicates that for some apps, the actual usage of an app
deviates from what the developer expects.
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Cloud Profiles Baseline Profiles

Apps with available profile 827 (100.00%) 708 (85.61%)

Mean unique methods 24,567 (10.90%) 18,240 (06.20%)
Standard deviation 18,615 (07.16%) 27,008 (08.61%)
Min. unique methods 56 (00.06%) 6 (0.002%)
Median unique methods 20,785 (09.33%) 5,639 (02.96%)
Max. unique methods 118,095 (47.75%) 171,228 (56.21%)

TABLE I: Statistics of Cloud Profiles collected on May 7th,
2025. While all apps had Cloud Profiles available, just 85.61%
of top apps provided a Baseline Profile. Typically, the latter
contains fewer methods, both in absolute numbers and as a
percentage of an app’s total methods, shown in brackets. An
exception is the largest profile: Cloud Profiles are not just a
superset of Baseline Profiles (see Section III-C).
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Fig. 3: Fraction of methods in the Cloud Profile of an app
plotted against the app size, in number of methods. The dashed
lines indicate the median. While a handful of apps have more
than a quarter of their methods in the Cloud Profile, as the
size of an app increases, the maximum fraction of methods
tends to decrease. This is expected because compiling too
many methods during installation takes a long time and goes
against the idea of profile-guided compilation of apps.

D. Hot/Startup/Post-startup Methods in Cloud Profiles

The apps we collected on May 7th have, on average,
282,111.65 methods with a standard deviation of 208,079.71.
Table I provides an overview of how many methods the
profiles for an app contain. Through the Cloud Profile, an
average of 7.88% (standard deviation of 5.17%) of an apps’
methods is compiled AOT. Figure 3 shows an overview of
how many methods an app has, how many of those are in the
Cloud Profiles, while Table II shows how often methods are
classified as hot, startup, post-startup, or a combination. While
virtually all profiles have methods that are considered only hot
or startup, other combinations are far less prevalent.

For our example app Signal, the APK contains 306,334

Type of Methods Declared in Cloud Profiles # of Apps

Hot, Startup, and Post-startup 2 (00.24%)
Hot and Startup 825 (99.76%)
Hot and Post-startup 2 (00.24%)
Startup and Post-startup 0 (00.00%)
Hot only 478 (57.80%)
Startup only 557 (67.35%)
Post-startup only 2 (00.24%)

TABLE II: Overview of how methods are tagged as which
type in the Cloud Profiles. When a method is in the Cloud
Profile, it is usually tagged hot, startup, and post-startup at
the same time. Only 2 apps’ Cloud Profiles contain methods
that are tagged as only post-startup, or hot and post-startup.
This is not surprising, because post-startup methods currently
do not affect AOT compilation (see Section II-B).

Dalvik methods. Of those, 55,025 (17.96%) are in the Cloud
Profile and of those, 12,101 (21.99%) belong to the class
org.thoughtcrime.securesms matching the app ID.
Focusing only on methods from the app ID package and
excluding potential library code might seem reasonable, but
it is problematic for two reasons: First, library code in the
profile indicates that it is important to the typical usage of
an app, and second, reliably distinguishing between app code
and library code is non-trivial [74]. For example, Signal also
uses the classes org.signal and org.whispersystems
with 994 and 486 methods in the Cloud Profile, respectively.
Note that discerning libraries from app code is out of scope
for this paper, and for our experiments, we do not distinguish
between methods based on their package.

Finally, the lack of post-startup methods for Signal (see
Listing 1 in Section II-B) represents the overall distribution
well: Only two apps in our dataset had Cloud Profiles that
contained methods in the post-startup category, which aligns
with our finding that it is effectively ignored on Android for
AOT compilation as of the latest Android version.

IV. PROFILE COVERAGE

Automated test input generators aim to cover the most
relevant parts of an app, under certain time and resource
constraints. A notion of code or activity coverage is typically
used as a metric to quantify the success in testing the target
app [2, 16, 17, 42, 51], e.g., whether an approach is better
in (exhaustively) testing an app compared to previous ones,
or how close it comes to simulating the manual input from
humans [62, 73]. This coverage can also be integrated in
the decision-making process for coverage-guided testing, most
notably during fuzzing [65].

Code coverage can be calculated at different granularities,
e.g., how many instructions, branches, methods, or classes
are executed, which correlate strongly with each other [41].
Code coverage can be also be limited by only taking actually
reachable code into account [49]. In the case of Android
apps, the code distributed with an APK should typically be
reachable, because the Android build toolchain also includes
recommended steps to remove dead code from the app and
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its dependencies [12, 33], which are enabled by default.
However, an app’s dependencies on external resources or
disabled features make complete coverage infeasible [2].

We argue that in a variety of use cases, it can be beneficial
to narrow down the scope by only focusing on the code that
is covered by typical user interactions. For example, to know
whether the code parts frequently executed by users have been
sufficiently tested, or whether a discovered bug or vulnerability
is part of a common user interaction, or not. We call this metric
the profile coverage and define it in the following way, where
Mprof is the set of methods in the Cloud Profile and Mexec is
the set of executed methods in a specific test scenario:

Profile Coverage =
|Mprof ∩Mexec|

|Mprof|

As we empirically evaluated in Section III and discussed in
Section II, not only are Cloud Profiles readily available for
apps on the Google Play Store to their developers as well as
to the research community, they also represent aggregated user
interactions from potentially millions of users of an app.

A. Challenges for Measuring Profile Coverage

To measure profile coverage, we require a way to trace the
method calls of Android apps to compare them against the
methods in the profile (see Section IV-B), as well as a source
of interactions (see Section IV-C). For the latter, we selected
automated UI test input generation, as it is the predominant use
case where generating inputs close to the ones real users would
provide is the most desirable. Finding available and robust
tooling turned out to be a challenge for both, since most tools
have been deprecated or make assumptions that we consider to
be too invasive for dynamic testing. For example, a common
approach for both method tracing and test input generators is
to repackage an app and insert additional code. This fails for
apps that check whether they have been tampered with [37, 55,
64, 78]. Apps also check whether they are being executed in
an emulator or on a modified Android system [39, 55, 64, 68,
78], either by querying system properties or reasoning about
values reported by various sensors. For example, if the battery
never decreases even though the system is not charging, it
is likely an emulated system. While removing these checks
is sometimes possible, it needs to be done manually and is
not an option for large-scale evaluations. We aim to minimize
changes made to the app and the Android system in order to
achieve compatibility with most apps.

Existing approaches to trace methods usually have one or
more of the following limitations: They require rebuilding the
Android system [11, 19], repackaging the app under test [21,
22, 47, 59, 77], only work with an app that has the debuggable
or profileable flag set [26, 58], or they attach a debugger to the
app process [23]. BPFRoid [1] is the only tool that works on
hardware as well as emulated devices and requires only root.
In preliminary tests, we found that attaching eBPF programs
to methods does not scale beyond hundreds of methods and is
more suited to analyze a limited number of specific methods.

Finally, as described in Section II, the ART has built-
in functionality to profile apps and uses it to generate the
Reference Profiles. Unfortunately, this only works with a
statistical threshold depending on how Android was configured
and will not mark all executed methods as “hot,” making
precise coverage computations impossible. For developers,
Android Studio offers the generation of Baseline Profiles using
automated macro-benchmarks. This works if the source code
is available because it depends on the Android test suite
being compiled into the app, or the app being built in a
“debuggable” mode. This generates a human-readable file,
which the developers are invited to fine-tune, and serves as
the basis of Baseline Profiles.

B. Our Approach: PROFTRACE

We propose a new method tracer based on the Linux
kernel’s uprobes, called PROFTRACE, which computes the
profile coverage of any app execution to address the limitations
of existing tracing methods. PROFTRACE requires neither
changes to the system nor the app itself, and it runs on
emulators as well as hardware, i.e., physical phones. The only
requirements for PROFTRACE are root access on the device to
interact with the tracing API, as well as a kernel (4.11+) sup-
porting uprobes (CONFIG_UPROBE_EVENTS=y). The flag is
enabled by default for all supported kernels in the Android
Open Source Project (AOSP), from Android 11 up to and
including Android 16 [24], and is enabled in the recommended
configuration as well. Ultimately, it is up to the manufacturer
to enable it, but uprobe tracing is supported by at least the
Android 14 and Android 15 emulators, as well as the Pixel 8
hardware phones, which we used for testing.

PROFTRACE handles all stages of measuring pro-
file coverage. The installation of an app uses adb
install-multiple, which not only handles split APKs
but also DEX metadata files (which include the Cloud Pro-
files), allowing us to install apps in the same way the Google
Play Store app does on users’ devices. This automates all nec-
essary steps, but they can also be done manually: (1) installing
one or more APKs, (2) putting the DEX metadata file in the
app’s data folder, and (3) triggering AOT compilation with pm
compile -m speed-profile $appid. Afterward, the
app is ready to start and all methods in the Cloud Profile have
been compiled to binary code in an odex file.

In order to use uprobe-based event tracing, we need two
things: an executable binary file and the offsets within the
file of the functions we wish to trace. Fortunately, the odex
file created during installation, which contains all methods
declared hot or startup from the profile, is suitable, and we can
use it directly as a target for tracing. PROFTRACE translates
the Dalvik method IDs to offsets in the binary using the built-
in tools profman and oatdump. Finally, it prepares the
necessary instructions for the kernel to place a probe at each
function offset. We also name each probe based on the offset,
which allows us to uniquely map them back to the profiled
methods. When all probes are registered, we enable tracing
and wait for the events to appear in an output file.
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Fig. 4: Overview of PROFTRACE’s Data Collection. dex2oat is not called directly, but as part of the installation, thus, all
methods in the profile are compiled ahead-of-time (AOT) and traceable, as uprobes can only trace binary and not Dalvik code.

At this point, interaction with the app can begin and will
be measured, e. g., by an automated test input generator (see
Section IV-C). When the app starts, the odex file is mapped
into the process memory, and the kernel is notified when a
traced method is executed. This approach also has the added
benefit that any process loading and executing the app is
traced, meaning background workers and multi-threaded apps
are handled by default. During app execution, each uprobe that
is triggered creates a log entry with a timestamp. Currently,
PROFTRACE supports running a baseline configuration (No-
Interaction), Monkey, DroidBot, and Fastbot2, as described in
Section V-A, but can easily be extended depending on the
availability of UI input generation tools and use case.

After testing finished, we disable the probes, pull the output
file from the device, and process it to compute the number
of unique method calls over time, i. e., the profile coverage.
Figure 4 shows an high-level overview of PROFTRACE’s setup
and data collection process based on the use case we selected:
automated UI input generation.

C. Use Case: Automated UI Input Generation

We started our susrvey of the available state-of-the-art UI
input generation approaches with Choudhary et al.’s [17] com-
parison of automated test input generators. While their latest
evaluated SDK level was 19, which corresponds to Android 4
(Kitkat, released 2013), their classification of random, model-
based, and systematic tools remains useful. Mao et al. [52]
extended this list in 2016, and we added additional candidate
tools published more recently as well. To limit the number of
tools under test, we discarded any that did not receive updates
after 2019 (Android 9) or were not publicly available. We
found the majority of tools have not been updated for a long
time and have limits that go against our tracer design: Of
the publicly available tools, we discarded any that did not
receive updates after 2019 [16, 43], depend on deprecated
tooling (such as Python 2) [40, 57, 69], require closed-source
APIs [48], cannot run on hardware devices [18], or tools that
we failed to run with Android 15 (released 2024) [36, 63, 72].

Two tools required no or minimal effort to use: Droid-
Bot [42] does not require instrumentation and works on both
emulators and hardware. It models the app under test on
the fly through screenshots and UI hierarchy dumps. Fast-
bot2 [51] also is a model-based approach that first extracts
widget text labels from the APK and then uses these in a
probabilistic model and reinforcement learning agent during

interaction to increase activity coverage. Finally, the UI/Ap-
plication Exerciser Monkey [35] is the de facto standard UI
input generation approach widely used by both developers and
researchers [17]. Although it only naively generates random
events, it is integrated into Android and thus readily available.
We thus select Monkey (random), DroidBot (model-based),
and Fastbot2 (model-based) for our evaluation.

V. EVALUATION

A. Experimental Setup

In addition to Monkey [35], DroidBot [42], and Fast-
bot2 [51], we also record a baseline by starting the target app
but otherwise do not interact with it (“No-Interaction”). We
parallelize our testing on four Pixel 8 phones running Android
15 (patch level BP1A.250305.019), rooted with Magisk, and
set up with internet access through WiFi.

For running Monkey, we set a seed for the random events
and throttled the interaction speed to one event per second.
We also set commonly used flags to not abort the testing
prematurely, such as --ignore-crashes. For DroidBot,
the default settings were sufficient. Fastbot2 required a custom
patch. Despite claiming to be compatible with Android 14,
it threw an irrecoverable exception when trying to rotate
the screen, seemingly because of a change in the Android
API. This also applies to Android 15, and due to a lack of
documentation on how to adapt Fastbot2, we decided to patch
out this particular event, assuming that screen rotation will not
have a significant impact on coverage.

To compare profile coverage with more general code cover-
age, we also set up ACVTool [59]. Because it needs to rewrite
the app under test and potentially changes code in a way that
profiles are no longer compatible (e. g., changing DEX method
IDs by adding methods), we evaluated it separately and did
not run it with PROFTRACE at the same time.

In a preliminary evaluation, we run all 827 apps in
the no-interaction configuration for 10 seconds to estab-
lish how robust tracing is. Our PROFTRACE success-
fully reports profile coverage for 779 (94.20%). Of the
unsuccessful apps, 29 had no activities to start (e. g.,
com.google.android.safetycore, which provides a
background service for messages), 5 failed to install (e. g.,
com.google.android.webview, which reported a miss-
ing library), and 14 had a nonstandard setup or malformed
files (e. g., com.android.chrome, which could not be
uninstalled, only downgraded).
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(a) No-Interaction (baseline)
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(b) Monkey (random)
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(c) DroidBot (model-based)
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(d) Fastbot2 (model-based)

Fig. 5: Profile Coverage of different UI interaction approaches with compatible apps. We executed each app four times with
each tool, but only show the curve with the highest overall profile coverage. The time limit was 10 minutes for all apps, and
we show only the last new unique traced method per app.

We then ran ACVTool on the working 779 apps in the same
no-interaction configuration, and it only managed to success-
fully analyze 114 (14.63%). In 183 (23.49%) instances, it
failed to instrument the APK, 477 (61.23%) instrumented
APKs failed to be installed, and in 5 (0.64%) cases, the
recording of the coverage failed. For the final evaluation,
we randomly sampled 50 of the 779 apps that work with
PROFTRACE iteratively until at least 15 were also in the set of
114 apps that ACVTool can successfully analyze in order to
provide a robust comparison between coverage distributions.

We run all four configurations of input generations for 10
minutes per app and repeat this four times. We selected this
relatively short duration to reflect downstream use cases of test
input generation [38, 60–62, 68], which typically favor shorter
run-times for scalability reasons, in the order of a couple
of minutes or even less, and because longer test durations
have been shown to have a diminishing impact on the overall
coverage [41]. The total time our experiments took is 6.56
days for PROFTRACE and 3.51 days for ACVTool.

B. Results

We first investigate the profile coverage over the execution
time of each app. Because we execute each app with each test
input generator four times, we first investigate the execution
with the highest achieved profile coverage. Figure 5 shows the
coverage over time, with the line ending when the last unique
method trace was recorded, even if the tool kept running.

Profile Coverage over Time. Most notably, DroidBot under-
performs significantly. We found that one of its dependencies
is outdated and fails to parse 34 of the 50 APKs under test.
When the app was started but not interacted with, no app
registered new traced methods after 400 seconds. For Monkey
and Fastbot2, even if the number of unique methods plateaus
for a while, both manage to find more unexplored methods in
the apps in the later stage of testing.

Over all four recorded interactions, Monkey achieved a
higher average profile coverage per app than the other pre-
sumably “smarter” model-based tools, with an average of
37.45% of methods in the Cloud Profile executed. The No-
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(using ACVTool)
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(c) Profile Coverage
(only ACVTool-compatible apps)

Fig. 6: Profile Coverage vs. Code Coverage. The horizontal line shows the mean, and the vertical line stretches from the .25
percentile to the .75 percentile. While a clear difference in profile coverage between Monkey and the other tools can be seen,
the differences are not as clear between the other tools and the baseline. Since ACVTool fails to run the app under test in more
than two-thirds of the cases, we additionally show the profile coverage for only the apps that ACVTool successfully analyzed.

Interaction baseline, DroidBot, and Fastbot2 achieved only
24.87%, 29.50%, and 32.51%, respectively. This relatively
low coverage shows that there is space for more research into
how to interact with apps more efficiently and more similar to
how real users are interacting with them. Additionally, it seems
there is also a ceiling for profile coverage: In no instance did
a test input generation tool achieve more than 70%.
Comparison to Code Coverage. We expect code coverage to
be smaller than profile coverage for two reasons: First, known
limits to test input generation make it unlikely to achieve a
code coverage of more than 30% [2]. Second, the number of
methods in the Cloud Profile is, on average, only 7.88 % of
all app methods (see Section III-D).

Figure 6 shows the average profile coverage and code
coverage of the four tests of each app per tool. The higher
profile coverage is visible, but the difference between the
tools is less pronounced for the code coverage. Here, Fast-
bot2 covers on average 9.95% of an app’s methods and is
outperforming Monkey, which manages to cover an average of
7.83%. DroidBot achieves a code coverage of 5.80%, barely
above the No-Interaction baseline with 5.69%.

Additionally, the requirement to repackage apps severely
limits ACVTool, only being able to trace 16 of our selected
apps, but of those, DroidBot successfully interacts with 14. We
selected those apps that worked with ACVTool and plotted
their profile coverage again to exclude the possibility of
biasing the result by excluding the apps that achieved a high
profile coverage. Monkey still performs best on the subset
of apps that we used for computing the code coverage. This
indicates that while Fastbot2 might have achieved a similar
code coverage to Monkey, the latter managed to cover a higher
percentage of methods considered important enough to be
compiled AOT based on aggregated usage data.

Finally, code coverage and profile coverage correlate at least
moderately. The No-Interaction baseline shows the highest
correlation with 0.73. DroidBot and Fastbot2 score 0.68 and
0.61, respectively. We compute the lowest correlation of 0.5
for Monkey, explained by its random exploration strategy.

RQ4: Can profiles be used to measure differences in
opaque dynamic testing success? Yes, measuring profile
coverage in addition to code coverage can uncover differ-
ences in behavior. It also enables comparing the coverage
of dynamic testing to aggregated usage information, as we
showed in the use case of dynamic UI input generators.
Surprisingly, Monkey outperformed the more sophisticated
model-based tools in terms of average profile coverage, ex-
ecuting 37.45% of methods in the cloud profile. Moreover,
our results suggest that the coverage ceiling identified in
prior work also constrains profile coverage with no tool
exceeding 70% on any app.

VI. DISCUSSION

We showed that profile coverage can give additional in-
sight into the analysis of arbitrary apps by comparing three
automated test input generation tools and a baseline. We also
introduce PROFTRACE, a minimally invasive and lightweight
tracer to accurately measure profile coverage in practice.

Inverted Profile Coverage. While we only discussed pro-
file coverage, inverted profile coverage, i. e., focusing on
the methods that are not in the Cloud Profile, could be a
fruitful direction to explore in future research. Because these
methods represent less frequently executed functionality, bugs
and crashes might be underrepresented in reports by users.
Using inverted profile coverage could lead testing approaches
and fuzzers to code that is more likely to contain unexplored
edge cases and bugs, because they would be less likely to be
encountered and reported by typical users.

Developer Use of Profiles. Analyzing their own app’s Cloud
Profiles could be beneficial for developers, especially when
compared to the Baseline Profiles. If they match closely, this
can give developers confidence in their approach to generate
Baseline Profiles. Conversely, if there are stark differences, this
can be a good starting point for an investigation into why their
Baseline Profiles differ so much from actual user behavior.
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Thus, digging deeper into the automated generation of these
profiles could be an interesting avenue for future work.
Threats to Validity. Compilation profiles might not be avail-
able for every app just after an update. In Section III-B we
showed that Cloud Profiles are readily available for popular
apps, but according to Google’s documentation, it can take up
to several days for them to be prepared [30]. While we can
show that the current profiles are generated on devices and the
Google Play Store app informs users of their collection, we
ultimately have to trust the aggregation process to represent,
as the documentation claims, “real-world user interaction with
the app”. We understand this to mean that Google calculates
an average over all collected profiles and as such, the resulting
Cloud Profiles represent an average over a large group of users.
This makes sense, both from an engineering and a business
perspective, and lines up with the information available.

VII. CONCLUSION

We shine a light on the as-of-yet unexplored compilation
profiles on Android by describing different types and empir-
ically studying the Cloud Profiles available from the Google
Play Store. Because they are aggregated from a large number
of users, they can be used as a proxy for user interactions. They
are easy to collect at scale and over version changes, which
allows them to be used on for various use cases, from guiding
UI testing approaches to helping developers understand how
their app is being used.

We apply them to compute a novel metric we call profile
coverage and evaluate three dynamic UI testing approaches.
We show that profile coverage can give insights into testing
results that would not be detectable with code coverage alone.
To measure the profile coverage using minimally invasive
techniques, we develop a method tracer, PROFTRACE, based
on Linux kernel uprobe events. In contrast to existing work,
it does not require changes to the Android system or the app
under test and works both on hardware phones and emulators.

Finally, we discuss the opportunities for future work that
the Cloud Profiles, i.e., the readily available, aggregated usage
information for Android apps, opens up.
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