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ABSTRACT
The Android operating system has evolved significantly since its

initial release in 2008. Most importantly, in a continuing effort to

increase the run-time performance of mobile applications (apps)

and to reduce resource requirements, the way code is executed has

transformed from being bytecode-based to a binary-based approach:

Apps are still mainly distributed as Dalvik bytecode, but the Android

Runtime (ART) uses an optimizing compiler to create binary code

ahead-of-time (AOT), just-in-time (JIT), or as a combination of both.

These changes in the build pipeline, including increasing obfus-

cation and optimization of the Dalvik bytecode, invalidate assump-

tions of bytecode-based static code analysis approaches through

identifier renaming and code shrinking. Furthermore, customized

apps can be distributed pre-compiled with devices’ firmware, side-

stepping the bytecode altogether. Finally, Android apps have always

relied on native binary code libraries for performance-critical tasks.

We propose to narrow the gap between bytecode and binary

code by leveraging the ART compiler’s capability to create well-

formed ELF binaries, called OATs, as the basis for further static

code analysis. To this end, we created a pipeline to automatically

and efficiently compile APKs to OATs into a benchmark dataset of

1,339 apps. We then evaluate five popular disassemblers based on

how well they can analyze these OATs based on how well they can

detect function boundaries. Our results, in particular, compared

to the success rate of two bytecode-based analyzers, demonstrate

that our OAT-based approach can help to bring a wider set of code

analysis tools and techniques to the area of Android app analysis.
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1 INTRODUCTION
Android has become the most widely used operating system [51]

andmakes it easy to develop and publish applications (apps) through

its standardized APIs and distribution model—even for publishers

with no development experience thanks to app generators [42]. As

of Fall 2022, the Google Play Store, the largest repository of Android

apps, hosted 2.6M apps [53], with 97,000 new apps being published

each month [52]. However, it is only one of multiple distribution

channels: in addition to a plethora of alternative markets [34, 58],

original equipment manufacturers (OEMs) and network operators

customize and bundle apps with their devices’ firmware [12].

Because of its popularity and integration in virtually every con-

text of modern life, Android and its apps are also an attractive target

for malicious actors along the whole supply chain. Mobile malware

typically injects malicious code into popular apps, a process called

repackaging, leading to a long line of research on app clone detec-

tion [37]. However, this is by far not the only open issue from a

security and privacy perspective: Other ongoing research ranges

from the detection of vulnerabilities (potentially caused by missing

updates in included third-party code) [9, 32], over the characteriza-

tion of privacy-invasive behavior through third-party libraries [64],

to general attribution issues in the Android ecosystem [28].

All of these use cases rely on, or could benefit from, reliable and

complete static code analysis. Unfortunately, due to the changes

in the build and execution environment that we document as part

of this paper, existing approaches are either outdated or rely on

unrealistic assumptions: (1) approaches depending on the accuracy

of method or class signatures are defeated by common bytecode

obfuscation; (2) clone detection approaches often include dead code

eliminated by code shrinking; (3) apps might no longer be dis-

tributed as bytecode but pre-installed as optimized binaries; (4)

apps generally can include native code that typically falls under

the limitations of any bytecode-based approach.

In this paper, we investigatewhetherwe can leverage the changes

in the Android Runtime (ART), which compiles Dalvik bytecode

into binary (i.e., native machine) code, to our advantage. We demon-

strate that it is feasible to transform apps into well-formed Exe-

cutable and Linkable Format (ELF) binaries (distributed as OATs

on Android) and evaluate five popular commercial as well as open-

source disassemblers (IDA Pro [31], Ghidra [40], Binary Ninja [57],
radare2 [44], angr [47]) on how they handle them.

In summary, we make the following contributions:

• We compile a subset of 1,339 open-source apps available F-

Droid as APKs and then to OATs as our benchmark dataset.

• We evaluate five disassemblers on how accurately they iden-

tify function boundaries (i.e., offsets and sizes)—the basis for

any further static code analysis.

https://doi.org/10.1145/3578357.3591219
https://doi.org/10.1145/3578357.3591219
https://doi.org/10.1145/3578357.3591219
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Figure 1: Lifetime of an Android app from source code to execution: Java and Kotlin source code and libraries are compiled into
optimized and obfuscated Dalvik bytecode. Native libraries written in C/C++ are compiled to binary ELF shared objects. This
code is then bundled with resources, such as the manifest file and images, into an archive and signed. During run time, native
libraries are directly loaded by ART, while Dalvik bytecode is compiled into OATs (i.e., ELF binaries with additional metadata).

• We compare the overall success rate of these binary disas-

semblers in handling apps compared to traditional bytecode

processing with Soot [48] (100% vs. 94%) and SootUp [49].

Our results show that OATs are a promising approach and can in-

deed narrow the gap between Dalvik (bytecode) and native (binary)

code. In future work, we will evaluate how well we can repurpose

the large existing toolbox of binary analysis approaches, e.g., for

code clone detection, for Android app analysis.

2 ANATOMY OF AN ANDROID APP
We start by providing an overview of how Android apps are built

and executed (summarized in Figure 1), and how these processes

have evolved over the years since Android’s first release in 2008.

App format and structure. Apps are distributed in the Android

Package (APK) file format. An APK is a compressed (“zipped”)

archive containing metadata about the app, its code, and resources,

such as images or localization files. The required AndroidMani-
fest.xml provides metadata such as the package name, which

uniquely identifies the app within the Google Play Store (and once

installed on the device), any requested permissions, and declared

interfaces. A signature is required to publish and install an APK [23],

but the certificates are typically self-signed.

Bytecode compilers. Originally, apps were written in Java and

compiled with the javac compiler to Java bytecode (.class) and then

with dx to Dalvik bytecode (.dex). Pre-compiled third-party libraries,

such as advertisement SDKs, can be included and “dexed” as well,

for example, in .jar (= collection of .class files) format. Android also

supports bundling libraries and their resources into an Android

Archive (.aar), which is packaged as an “app within the app.” The

compiled Dalvik bytecode is then stored in one or more Dalvik

Executable (DEX) files, packed into an APK, and distributed to run

on Android devices. Tools written for Java can be easily integrated

into the pipeline at this stage, such as the optimizer and obfuscator

ProGuard [27], which has been a part of Android’s build tools since

Android 2.3 (Gingerbread, released in 2010) [14].

Since its first release, Android has transformed significantly:

Supported since 2017, Kotlin became the preferred programming

language in 2019 [19, 30]. The compilation of source code to Dalvik

bytecode has changed as well: Combining the Java-based ProGuard

with the DEX compiler dx had the drawback that the obfuscation-

unaware compiler had a hard time optimizing the intermediate

Java bytecode. As a result, Facebook developed their own DEX

bytecode optimizer Redex [11]. Google experimented with the Jack

(Java Android Compiler Kit) and Jill (Jack Intermediate Library

Linker) toolchain, which combined Java to DEX compilation with

shrinking and obfuscation [15]. Both were later deprecated in favor

of D8/R8: In 2019 D8 became the default “dexer” instead of dx,
while R8 fully replaced dx. R8 included several features ProGuard

performed separately from compilation [25, 26], such as obfuscation

(renaming variables, methods, and class identifiers), optimization of

code-related features, and code shrinking (removing unused code,

also known as tree shaking) [16, 18].
1
Even though not enabled

by default during development, these steps are recommended for

the final version of an app [18]. When R8 obfuscation is enabled, it

generates a mapping.txt file to map original to obfuscated method

names. This file is not included in the final APK, thus not available

to security analysts, but only intended for the developer, e.g., to

recover the original names in stack traces for debugging.

Android Runtime (ART).While an apps’ code is distributed as

Dalvik bytecode, the runtime compiles it to binary machine code

to increase performance and reduce system resources. In 2014,

with the release of Android 5.0 (Lollipop), Google fully replaced

the Dalvik VM with ART using ahead-of-time (AOT) compilation,

i.e., compiling the whole app during installation [21]. Because the

necessary re-compilation during app and system updates turned

out to be too resource-intensive, Android 7.0 (Nougat, released in

2016) added just-in-time (JIT) compilation. In the current Android

13.0, ART uses both AOT and JIT compilation.

The ART compiler dex2oat compiles Dalvik bytecode to native

binaries, so-called Of Ahead Time (OAT) files. An OAT file (.oat)

is essentially an ELF shared object containing additional sections

with OAT metadata [55]. In addition to the hybrid AOT+JIT model,

dex2oat can compile apps in their entirety to generate OAT files

with all methods compiled to binary code. Note that, dex2oat is a
new compiler implementation not based on the commonly used

Clang or gcc. Furthermore, e.g., for system apps or framework

libraries provided by device manufacturers or other parties along

the supply chain, OAT files ship pre-compiled and bundled with

the firmware of a device, i.e., their Dalvik bytecode is unavailable

for analysis.

1
The configuration names are the same for backwards-compatibility, but R8’s actual
implementation is different from the standalone ProGuard [26].
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Android Native Development Kit (NDK). To enable the inclu-

sion of highly optimized binary files, developers can bundle pre-

compiled native
2
code in their apps through the Native Develop-

ment Kit (NDK) [22]. This native code can be called through the Java

Native Interface (JNI) from Java or Kotlin code. Native libraries are

distributed as ELF shared object (.so) files, and by default stripped of

their symbol table and debugging information during the build pro-

cess with the clang-based ndk-build [18]. Similar to mapping.txt
generated by R8 it generates native-debug-symbols.zip, which
also stays with the developer for recovering names. Unlike R8-
generated code though, native libraries are loaded directly by ART

at run time without further compilation and optimization.

3 OATS: CHALLENGES & OPPORTUNITIES
As detailed in Section 2, app code is typically distributed as Dalvik

bytecode, but it is executed as binary code. Note that, modern An-

droid systems almost exclusively run on ARM (~98% [50, 56]), while

the x86/64 architecture is mainly used by emulators. In general,

analyzing binaries is challenging for multiple reasons, which have

been well documented in the literature [1, 47]: the detection (i.e.,

recovery) of function boundaries, and dealing with obfuscation.

Function recovery. The correct identification of functions in bi-

nary code is a topic of still ongoing research, and its accuracy affects

any code analysis approaches that build on the identified functions.

Because native code can be stripped of debug and symbol infor-

mation, the starting addresses of all functions cannot always be

determined with certainty. Quarkslab [7] evaluated disassemblers

and binary exporters with a focus on performance comparison of

IDA Pro and Ghidra. The latter was significantly slower for large

binaries, but in addition to disassembly, performs decompilation,

which IDA Pro does not do automatically. Jiang et al. [36] surveyed

eight popular state-of-the-art tools that can parse and extract in-

structions and functions from ARM binary files: three commercial

(Binary Ninja, Hopper, IDA Pro) and five non-commercial ones

(angr, BAP, Ghidra, objdump, radare2). They observed room for

improvement when it comes to function boundary detection, es-

pecially since the approach that works well for x86/x64 binaries,

Nucleus [2], does not work on the ARM instruction set. Jiang et

al. [35] recently extended their study to evaluate the disassemblers’

performance in locating instruction boundaries, function bound-

aries, and function signatures of ARM binaries. However, their

work focused on the gcc and clang compilers, i.e., their results

only give an indication about how well disassemblers handle the

native libraries built with them. In contrast, we dig deeper into

the disassemblers’ performance on binaries generated by dex2oat,
which assists us with metadata about correct function boundaries.

Optimizing (away) obfuscations. Evenwhen functions have been
identified correctly, optimizations and obfuscations still pose signif-

icant challenges for any analysis approach. Ren et al. [46] surveyed

47 binary similarity approaches and found that all of them only

assumed default compiler optimizations. Ren et al. further studied

the impact of non-default optimizations and proposed BinTuner,

which tries to find the compiler optimization settings that maximize

binary code differences based on iterative compilation.

2
Native and binary code are terms that can be used interchangeably, but we call binary

libraries pre-compiled in the APK native and DEX code compiled with ART binary.

Finally, a common approach to analyze binary code is to first nor-

malize it by lifting it into an intermediate representation (IR), i.e., a

higher-level language, and then re-compile it with optimizations [1,

8, 13]. If successful, the re-compilation with aggressive optimiza-

tions can normalize the code and thus remove obfuscations. This

optimized re-compilation is also an intuition behind our approach,

although we essentially transform the code to a lower-level lan-

guage: we aim to use the ART compiler to mitigate optimizations

and obfuscations – introduced at a higher level during the bytecode

creation and “dexing” – in the binary code used at later stages.

4 RELATEDWORK

Android app analysis toolchains. *droid [45] surveyed 300 An-

droid analysis papers published between 2010—2016 and found both

a lack of maintenance and issues with reproducibility—an issue we

encountered as well. Pauck et al. [43] focused on static taint track-

ing and similarly observed a lack of reproducible comparisons as

well as datasets that represent real-world apps. Mauthe et al. [39]

surveyed Android decompilers, i.e., tools to lift Dalvik bytecode to

Java source code. While they observed obfuscation as a minor factor

in this use case, they encountered tool failures due to technical lim-

itations. We faced similar technical limitations with Dalvik-based

tools to process apps due to underlying issues in Soot, the most

commonly used bytecode processing framework.

ART-assisted security. The replacement of the Dalvik VM with

ART not only broke existing approaches but opened up new possibil-

ities for security mechanisms. CompARTist [33] instruments ART

to sandbox third-party libraries from the main app. TaintART [54],

TaintMan [63], and NDroid [60] use ART to implement dynamic

taint tracking. ARTist [4] is a more general app instrumentation

framework with taint tracking as one of its use cases. Malton [61]

instruments ART to monitor the execution of malware. Other ap-

proaches, such as Tiro [59] and DexLego [41] instrument ART to

defeat malware using run-time packing and extract Dalvik bytecode.

In contrast, our approach does not aim at reconstructing bytecode,

but instead directly processes the well-formed binary code gener-

ated by ART. Most closely related to our work, Deoptfuscator [62]

implements an analyzer on top of ART to find potentially obfus-

cated methods and then instructs ReDex to optimize those away.

However, in addition to requiring repackaging (and re-signing) the

app, which is invasive and can be detected by app integrity checks

used for tamper-proofing an app [29, 65], this does not allow for

the analysis of pre-installed OAT-only apps.

5 OUR APPROACH
To evaluate the practicality of OAT-based app analysis we measure

how accurate binary disassemblers are at identifying correct func-

tions in OAT files without guidance from metadata obtained from

the Dalvik bytecode. While oatdump, which is included in ART,

parses OATs and can link them to the Dalvik bytecode they were

compiled from, it is meant for humans and the output is not (yet)

stable across versions. However, we can use it as a ground truth

to compare the function boundaries provided by various disassem-

blers. We start our evaluation with APKs, which we automatically

compile to OAT files for further analysis.
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5.1 Dataset
We use a subset of apps from the open-source F-Droid market [10]

and compile the APKs from their source. In addition to building the

apps, we extended the automated build server [10] to collect detailed

build configurations, e.g., whether obfuscation, optimization, or

code shrinking is enabled for an app. We limit our selection to

apps that support the Gradle build system, the official toolchain

for Android [17], and use the Gradle version specified in the build

settings. Out of 2,874 candidate apps we automatically built 1,339

(46.59%) apps successfully. Themajority of failed builds only support

Java 8 and do not workwith Java 11, which has been supported since

Gradle 5/Android 9 (Pie, API level 28, released August 2018) [16].

We discard these apps as this indicates they have not been updated

for several years and do not support current Android versions.

Binary code compilation. To generate OAT files we implemented

apk2oat, which can compile an app’s bytecode in three settings:

• Phone. The first option is to install apps on a physical phone

and execute the dex2oat version shipped with its Android

firmware to compile them to OAT binaries suitable for the

underlying hardware platform (almost exclusively ARM).

This requires root privileges on the device, but only to access

the output files of the compilation.

• Emulator. Installing apps on an emulator provides more flex-

ibility and is easier to parallelize. At the time of our imple-

mentation, the emulator did not allow ARM emulators to

be run on x86 hosts, prohibiting cross-compilation.
3
This

limitation seems to have been removed since.

• Host-based AOSP. The Android Open Source Project (AOSP)

also provides the source code for dex2oat. Thus, it is possible
to build and run dex2oat on any arbitrary x86 host and cross-

compile the apps to ARM OAT binaries because it allows

specifying the target architecture.

In our experiments, we use the last option as it is the most

convenient and scalable. Compared to our initial experiments on a

physical phone we are not limited to targeting an Android version

that we can root. Thus, we used the most current AOSP version

at the time of writing, Android 13 (Tiramisu, android-13.0.0_r3
released August 2022; API level 33, OAT version 225). Additionally

to passing the corresponding ARM boot image from the AOSP

to dex2oat, we use the –generate-debug-info flag and set the

compiler to filter=everything, and backend=optimizing. The
former setting explicitly does not change the generated code but

adds, amongst other metadata, function symbols and DEX method

names to make our analysis easier.

Bytecode baseline. To provide a comparison with a Dalvik-based

approach, we run experiments with Soot (version 4.4.0, released
January 2023) and SootUp (version 1.0.0, released December 2022).

Because both analyze APKs and not OATs, we only investigate how

many apps they can successfully analyze, i.e., can parse and prepare

the Dalvik bytecode for further analysis. Soot is used as the basis

for a variety of app analysis tools, such as FlowDroid [3] for data

flow analysis and SimiDroid [38] for app similarity. SootUp is a

recent overhaul of this framework and is not backward compatible.

3https://android.googlesource.com/platform/external/qemu/+/

1381d44efe69ba0b37fb7f7ef868125e279fc14a/android/emulator/main-emulator.cpp#

910 (git version from January 13, 2022)

5.2 Ground Truth on Functions
ART provides oatdump to show information about an OAT file

such as the command used to compile it, as well as the disassembly

and, if available, Dalvik bytecode for each function in the binary.

While its output is human-readable, it is not stable across versions

yet and it is not well documented. We implemented a parser for

AOSP version 13.0.0_r3 to extract the following information from

the compiled OAT files for each of its functions:

• signature, consisting of package, class, and method names

as well as argument types.

• dex offset, identifying the method uniquely in a DEX file.

• availability, indicating whether a method was compiled or

not. dex2oat skips Dalvik methods that are marked as ab-

stract, but also optimizes other methods away. This makes

a comparison to methods reported by bytecode-based ap-

proaches challenging.

• real offset, identifying the position of the function in the

binary OAT file. This is calculated by adding the code offset

of the function to the global oat offset.
• function size, in bytes.

5.3 Selected Disassemblers
For our evaluation, we chose the following disassemblers:

• IDA Pro [31] (version 7.7). A commercial tool that allows for

interactive and automated analysis with scripts and plugins.

• Binary Ninja [57] (version 2.3.2660). A commercial tool that

supports instrumentation through Python.

• Ghidra [40] (version 9.2.3). An open-source tool with a cus-

tom disassembler that supports scripting and plugins. Due

to its time and memory requirements, we disabled certain

Analyzers that are not relevant to our evaluation, such as

the GCCExceptionAnalyzer and Const Analyzers.

• radare2 [44] (version 5.7.7). An open-source tool with bind-

ings in various languages that make it easy to instrument. It

uses the Capstone disassembler for ARM64 andwe instructed

it to take symbols into account.

• angr [47] (version 9.2.6). An open-source tool that provides

functionality for static as well as dynamic analysis. Experi-

mental Android support uses Soot in the background.

In addition, we used the BinExport [20] plugin version 12@-
432130350 for IDA Pro, Ghidra, and Binary Ninja. It is a format

used to export analysis data for downstream applications, such as

BinDiff [66] for binary similarity. For all disassemblers and BinEx-
port we created wrappers to extract all known function offsets as

well as their size, when available. IDA Pro and BinExport do not

provide a size for the detected functions. Instead, we have to sum

the length of all basic blocks that are in the functions flow graph to

determine the size of a function.

We identified additional tools but did not include them in our

evaluation due to the already significant engineering effort required

in creating the dataset as well as the analysis pipeline. BAP [5],Hop-
per [6], and ddisasm [24] support automated analysis for ARM64

and we plan to include them in future work. Furthermore, while

LIEF is an ideal candidate that can not only parse Dalvik bytecode

but also OAT files, it currently only supports parsing OAT files up

to version 138 (Android 9), and for this reason, we had to discard it.

https://android.googlesource.com/platform/external/qemu/+/1381d44efe69ba0b37fb7f7ef868125e279fc14a/android/emulator/main-emulator.cpp#910
https://android.googlesource.com/platform/external/qemu/+/1381d44efe69ba0b37fb7f7ef868125e279fc14a/android/emulator/main-emulator.cpp#910
https://android.googlesource.com/platform/external/qemu/+/1381d44efe69ba0b37fb7f7ef868125e279fc14a/android/emulator/main-emulator.cpp#910
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6 RESULTS
6.1 Overall Success Rate
We could reliably compile all 1,339 APKs to OAT files “ahead-of-

time, ” i.e., in their entirety, using the host-based AOSP approach

(see Section 5.1) in just 2.68 seconds per app on average. Almost all

tools successfully finished analysis of all OATs as well, only Ghidra
failed to provide results due to resource constraints in our setup: At

first, we only could analyze 1,315 before we increased the available

memory available from 20GB to 50GB. This resulted in a total of

1,333 apps being successfully analyzed by Ghidra. However, even

then a couple of apps caused it to exhaust the assigned memory and

hit the timeout of 45 minutes per app, which we set for all tools.

The success rates of the binary disassemblers on the OAT files

are generally higher than for Soot, which we used to process the

bytecode in the original APK files. For 78 (5.83%) apps, Soot was
not able to finish the analysis at all due to an 8-year-old open issue

concerning unhandled opcodes.
4
Its successor, SootUp, successfully

processed all APKs but failed to lift seven methods in five apps to

Java code for further analysis.

6.2 Function Boundary Detection
Ground truth. Analyzing the OATs with oatdump succeeded for

all apps and yielded a total of more than 37.08 million functions. Of

those, 2.08 million functions (0.06%) did not have any binary code

in the OAT file. We inspected some of the most common functions

without code and found them to be either declared abstract in the

Java/Kotlin source or optimized away by dex2oat (e.g., by inlin-

ing or dead code elimination). Additionally, 6.76 million functions

shared their code. This means their Dalvik bytecode was compiled

to identical binary code and dex2oat saved storage space by point-

ing to the same offset instead of duplicating the memory. This left

us with 28.24 million unique function offset and size pairs across

all apps. None of the functions that shared an offset had different

sizes. The number of unique functions per app in an OAT file is on

average 21,093 with a median of 16,928.

Disassembler performance.Wepresent the detailed results across

disassemblers in Table 1 and a summary in Figure 2. For each func-

tion identified by a disassembler, we compare it to the information

obtained from oatdump. If the offset and size match, we have a

full match. If only the offset matches but the size is not correct,

it is a offset match (i.e., partial match). If the function starts at an

unknown offset, it is a superfluous function. If a disassembler could

not identify a function it is not found, e.g. when analysis of the

containing file failed or the preceding function boundary claims

the next code block. An ideal situation would be to have only full

matches. With default settings, none of the evaluated tools achieve

this result and show varying capabilities to produce a trustwor-

thy basis for further code analysis relying on correctly identified

functions, such as code similarity on a function granularity.

IDA Pro has the highest recall and was able to correctly retrieve

98.13% of functions, matching their offset as well as size while

Ghidra only found 79.27%. However, the BinExport plugin for IDA
Pro has a low precision with only 35.65% correctly identified func-

tions, second to last only with the performance of the BinExport

4https://github.com/soot-oss/soot/issues/331 (opened January 2015)
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Figure 2: Summary of disassembled function boundaries com-
pared to oatdump’s ground truth.We evaluated the disassem-
blers and available BinExport plugins (𝐵𝐸 ) by comparing the
identified function offsets and sizes to what oatdump reports.
A full match constitutes a match of the function offset and
its size, for an offset match the size differs, and if an offset
is returned by the disassembler that is not present in the
oatdump output, we mark it as superfluous.

plugin for Binary Ninja, which reports just 35.17% of functions

correctly. radare2 performs very well and has the second highest

precision with 92.93%, but does not have a BinExport plugin.
When investigating the apps with the lowest scores across all

disassemblers we found that they have very few methods and the

majority of them are used as “data apps” for other apps. For exam-

ple, the flight information system app player.efis.pfd uses six
additional apps to provide terrain data for various regions, each of

those having only six identifiable methods according to oatdump.
The stark differences between IDA Pro and Binary Ninja and

their BinExport files are surprising and warrant future research. We

speculated at first there was a mistake in our parsing of BinExport
files because it uses a complex layout to prevent malicious binaries

to explode the state. However, this difference to the direct disassem-

bler output is not present for Ghidra. The missing functions in the

Binary Ninja BinExport are likely due to unaddressed “TODOs” in
the plugin in the version we used as it is considered “Pre-Release."

5

7 DISCUSSION & FUTUREWORK
Takeaways. Our results show that analyzing apps as binary OAT

files is an imperfect but promising alternative to Dalvik-based byte-

code analyzers–in particular considering that we evaluated dis-

assemblers in their default configuration without leveraging any

metadata available through oatdump (yet). Overall, the success rate
is still higher than that of bytecode-based Soot when it comes to

the number of successfully processed apps, up to 100% compared to

94.17%. The recently released SootUp improves over Soot, but it also
fails to analyze all methods due to a MethodTooLargeException.
SootUp first lifts Dalvik to Java bytecode before using a Java analy-

sis library. Unlike Java, however, Dalvik does not have a maximum

5https://github.com/google/binexport/releases/tag/v11-20201202-rc0 (January 2021)

https://github.com/soot-oss/soot/issues/331
https://github.com/google/binexport/releases/tag/v11-20201202-rc0
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PROCESSED APPS PER TOOL DETECTED FUNCTIONS PERFORMANCE
Name (version) Availability Success Full Match Only Offset Not Found Superfluous Precision Recall

Bytecode: Soot (4.4.0) � 1,261 (94.17%) - - - - - -

Bytecode: SootUp (1.0.0) ∗ � 1,339 (100.00%) - - - - - -

oatdump (13.0.0_r3) � 1,339 (100.00%) 28.24M (100.00%) - - - 1.00 1.00

IDA Pro (7.7) � 1,339 (100.00%) 27.72M (98.13%) 0.53M (1.87%) 0.00M (0.00%) 0.31M (1.11%) 0.97 0.98

Ghidra (9.2.3) � 1,333 (99.55%) 22.39M (79.27%) 5.23M (18.51%) 0.63M (2.22%) 0.30M (1.08%) 0.80 0.79

Binary Ninja (2.3.2660) � 1,339 (100.00%) 24.84M (87.94%) 3.40M (12.04%) 0.01M (0.02%) 1.24M (4.38%) 0.84 0.88

radare2 (5.7.7) � 1,339 (100.00%) 26.25M (92.93%) 1.99M (7.06%) 0.00M (0.00%) 0.66M (2.35%) 0.91 0.93

angr (9.2.6) � 1,339 (100.00%) 16.42M (58.13%) 11.83M (41.87%) 0.00M (0.00%) 3.69M (13.08%) 0.51 0.58

IDA ProBinExport (v12) � 1,339 (100.00%) 10.07M (35.65%) 18.17M (64.35%) 0.00M (0.00%) 0.32M (1.12%) 0.35 0.36

GhidraBinExport (v12) � 1,333 (99.55%) 22.39M (79.27%) 5.23M (18.51%) 0.63M (2.22%) 0.29M (1.03%) 0.80 0.79

Binary NinjaBinExport (v12) � 1,339 (100.00%) 9.93M (35.17%) 6.97M (24.69%) 11.34M (40.14%) 0.20M (0.70%) 0.58 0.35

Table 1: Results of running disassemblers (with and without the BinExport plugin; �=open source, �=commercial tool) on OAT
files. The success rate indicates how many files were successfully analyzed and did not crash the tool or time out after 45
minutes. We ran Soot and SootUp on the original APKs but did not process its output (∗ SootUp exited successfully on all apps
but failed to analyze 7 functions in 5 apps). Full matches for oatdump indicate the expected functions, i.e., each unique offset
that a function has since multiple Dalvik methods can be compiled to the same binary function. All percentages relate to this
expected number of functions. Full Match indicates the offset and size are matching, Only Offset indicates the disassembler
identified a function but its size is not correct. Superfluous functions are ones identified at offsets that do not match any known
functions obtained from oatdump, conversely, Not Found are known functions a disassembler failed to locate.

method size of 65,535 bytes, and the currently included version of

dex2jar does not support breaking up these methods. We filed an

issue with SootUp to update its dependencies.
6

One challenge is still the volatility of the OAT format itself,

which is why we opted against assuming that the disassemblers

could handle OAT files and their metadata. While LIEF provides a

dedicated OAT parser, it is not kept up to date and demonstrates

the difficulty in creating robust analysis tools in a steadily changing

environment.

We also show what differences exist between the disassemblers

that are often seen as interchangeable steps in a bigger analysis

pipeline. Especially for binary analysis, there are not many high-

level tools available that are compatible withmultiple disassemblers,

making comparisons difficult. Additionally, we did not evaluate

multiple compiler settings for OAT files that might aggravate those

differences (and might already be applied to pre-installed apps that

do not have an APK or even Dalvik bytecode available). Since our

goal is to provide a robust foundation for analyzing apps as binaries,

we hope this offers a critical view on comparing downstream tools

using different disassemblers.

Finally, we opted to create a dataset that is reproducible, but also

possible to keep up to date in order to evaluate future changes to the

Android build system. While the exact set of apps that is possible to

be built through F-Droid will change over time, the implementation

of such an approach can be replicated and we plan to release our

data and code in a future update to this paper.

Limitations.We only compare binary-based and bytecode-based

tools on their success rate of analyzing files and do not yet ap-

ply further processing like call graph reconstructions or assessing

6https://github.com/soot-oss/SootUp/issues/563 (opened March 2023)

downstream tooling. Because some methods in bytecode are opti-

mized away by dex2oat, a direct comparison is challenging. We also

do not include native libraries for now, which would bias the results

as bytecode-only-based tools have no option to include them.

Since oatdump depends on the additional .vdex file, which con-

tains Dalvik code, to create its output and is part of ART, we trust

it to create a list of expected methods. However, the OATs contain

several thunk functions that are not declared in the oatdump out-

put but can be considered as valid methods, which explains some

superfluous functions. For example, angr is very eager to declare

a function at any byte sequence that can be interpreted as one or

more instructions. We chose to interpret the results conservatively

and nevertheless declare those functions as false positives. The

precision is thus a lower bound.

Since our dataset is based on apps from a market with a fo-

cus on privacy and transparency, they do not represent the apps

found on the more popular Google Play Store. Especially the use

of advertisement or closed-source libraries is severely underrep-

resented, as well as the use of commercial compilers, optimizers,

and obfuscators. Including those apps would introduce a source of

uncertainty for downstream analysis as they do not provide any

reliable information about build settings, compilers, or libraries

used. Additionally, apps that use WebViews will have little Dalvik

or native code included in the APK to be analyzed.

Future work. A widely used application of static app analysis is to

compute the similarity of functions or whole apps. This enables use

cases such as malware and library detection, identifying vulnerabil-

ities automatically, or attributing privacy-violating behavior. One

common technique for computing the similarity of code is to lift it

and re-compile it with optimizations, which serves as normalization

before further processing. In the case of ART, the compilation to

binary code uses an optimizing compiler and thus can be leveraged

https://github.com/soot-oss/SootUp/issues/563
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for such tasks. Our next step is to identify how much this affects

analysis and evaluate downstream binary tooling for app analysis.

Even if binary tools are not perfect in finding function boundaries,

their reliability to analyze apps without additional assumptions

could outweigh the effort to keep specialized Android-tooling up

to date. Unless there is a reason for Google to abandon the compila-

tion of Dalvik bytecode to binary code, or deprecate ahead-of-time

compilation, general-purpose binary tools will continue to work

with OATs.

Analyzing the bytecode as binary code has the additional benefit

that the same tools can be used to analyze the app’s main code as

well as its native libraries. So far, it was necessary to develop tools

that could represent Dalvik and native code at the same time. By

utilizing ART’s dex2oat compiler, it is possible to find a unified

representation of an app’s Dalvik and native code. This however

requires additional instrumentation since the way the Android

framework, native libraries, and the binary app code are loaded

into memory depend on ART.

While our approach and evaluation were motivated by our frus-

tration with finding and running “State-of-the-Art” Android analy-

sis tools, a more detailed survey on the state of app analysis will

be beneficial. The changes in the Android build pipeline described

in Section 2 pose significant challenges to approaches that, e.g.,

assume package, class, and method signatures to be preserved, or

unused library code not to be discarded. While binary analysis

might seem to be at a disadvantage by not having access to the

high-level Dalvik metadata, it has the advantage of being more

mature and expecting even more adversarial code.

Finally, OATs can be used as an additional dataset for binary

tooling. This can help to evaluate how well binary analysis tools

work in a different context and their ability to work with a compiler

besides the widely benchmarked clang and gcc.

8 CONCLUSION
By leveraging ART’s dex2oat compiler, we evaluate the disassembly

of ahead-of-time compiled APKs to binary OATs from a function

boundary perspective. For this, we compiled 1,339 open-source

apps to OAT files and analyzed them with IDA Pro, Ghidra, Binary
Ninja, radare2, and angr. We also evaluated the BinExport plugin
(where available) and compared the reported function boundaries

with a ground truth obtained from oatdump. While no disassembler

showed perfect results in finding all functions, the automated and

unguided disassembly is failing only in a few cases and enables

further processing of the apps. We envision that our approach

and evaluation can provide a foundation for future research on

combining app and binary analysis, such as code clone detection

for malware analysis, library identification, attribution, and more.
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