
Analyzing the iOS Local Network Permission from a Technical and User Perspective

David Schmidt∗†, Alexander Ponticello¶§, Magdalena Steinböck∗, Katharina Krombholz¶, Martina Lindorfer∗
∗TU Wien †CDL AsTra ¶CISPA Helmholtz Center for Information Security §Saarland University

∗{david.schmidt, magdalena.steinboeck, martina}@seclab.wien ¶{alexander.ponticello, krombholz}@cispa.de

Abstract—In the past, malicious apps attacked routers or
identified locations through local network communication. To
mitigate security and privacy risks from local network access,
Apple introduced a new permission with iOS 14. To be effective,
the permission needs to protect against technical threats, and
users must be able to make an informed permission decision.
The latter is presumably hindered by the intrinsic technicality
of the concept of the local network.

In this paper, we perform the first comprehensive analysis
of the local network permission by studying four key aspects.
We investigate the security of its implementation by system-
atically accessing the local network. We explore local network
accesses via a large-scale dynamic analysis of 10,862 iOS and
Android apps. We analyze the concepts that constitute the
permission prompts, as this is all the information users get
before making a decision. Based on the identified concepts, we
conduct an online survey (N = 150) to comprehend users’
understanding of the permission, their threat awareness, and
common misconceptions.

Our work reveals two methods to bypass the permission
from webviews, and that the protected local network addresses
are insufficient. We show how and when apps access the
local network, and how the situation differs between iOS and
Android. Finally, we present the light and shadow of users’
understanding of the permission. While nearly every partici-
pant is aware of at least one threat (83.11%), misconceptions
are even more common (84.46%).

1. Introduction

With the release of iOS 14 in 2020, Apple introduced a
new permission to guard access to the local network [16].
Usually, devices connected to a local network cannot be
directly accessed from the Internet. However, if apps can
access a local network, they can communicate with these
devices, opening new attack vectors. Furthermore, collecting
information of a person’s local network can enable tracking
and user profiling [48], [78]. After the permission became
widely used, a discussion arose among users as to why
certain apps requested such access. Popular apps like AliEx-
press and Instagram were suspected of scanning the network
and collecting data to track users [79], [83].

Prior research already identified threats induced by local
network access. Reardon et al. [78] uncovered Android apps
that obtained the MAC address of WiFi routers through local

network communication to bypass the location permission.
Girish et al. [48] demonstrated that household fingerprinting
and user tracking are possible via local multicasts. Further-
more, a malicious Android app was found reconfiguring
the Domain Name System (DNS) settings of routers to
forward traffic to malicious domains [58]. Finally, Kuchhal
and Li [60] explored local network access of websites with
desktop browsers and observed legitimate use cases such as
fraud and bot detection, but warned of the potential misuse
of this technique for tracking and profiling.

Prior research has not yet investigated the situation when
a permission protects local network access nor the iOS
permission itself. Noteworthy, this permission is distinct
from others: (1) It affects not only the device running the
app but also its surroundings, i.e., all devices connected
to the network. (2) Android, as of version 15 (released
in 2024), does not have a corresponding permission that
restricts accessing the local network. (3) Compared to other
permissions, like location or contact access, it is presumably
less obvious to users what the local network comprises and
why information about it is sensitive. (4) Developers cannot
directly request the permission from the app’s code. Instead,
the Operating System (OS) detects access and prompts the
user to grant the permission [20].

The implementation of the local network permissions is
also yet to be studied. Users raised concerns that YouTube
was bypassing the local network permission [81]. In this
case, the access was caused by Apple’s AirPlay function-
ality, which does not require permission. However, unau-
thorized access might be possible. Further, it is unclear
how prevalent local network access is and if apps behave
differently on Android, where no such permission exists.

To fill these gaps, we address this topic with an inter-
disciplinary approach by looking at both the technical and
user perspective. We contribute a comprehensive assessment
of the security and privacy of this functionality, how apps
access the local network, how they prompt users for it, and
the users’ understanding of the permission. It is vital to study
both perspectives. The technical aspects give us insights
into potential misuse of the permission and how widespread
local network access is in apps. The user perspective helps
us understand whether the permission dialog enables users
to make informed decisions. Furthermore, it shows threat
awareness related to local network access. Both technical
and user aspects need to be effective, as none can achieve
sufficient protection without the other. If the permission is

RQ4

Permission
Dialog Messages

RQ3RQ2

Technical
Implementation

RQ1
Local

Network

Comparison
iOS vs. Android

Understanding of
Important Concepts

Figure 1: Overview of analysis to answer our research
questions. (RQ1) We study in Section 3 if the local network
permission is implemented securely. (RQ2) In Section 4, we
show how prevalent local network access is. (RQ3) Section 5
presents our content analysis of the permission rationales.
(RQ4) To investigate the users’ perspective, we performed
a user study as described in Section 6.

not implemented securely, there is a false sense of security
and privacy. Likewise, if users are not able to make an
informed decision, malicious apps could trick users into
granting the permission. Thus, as shown in the overview in
Figure 1, we investigate the technical and user perspective
in four consecutive analysis steps.

First, we investigate whether the implementation of the
permission is secure or if it is possible to bypass it. We
systematically access the local network to find potential gaps
in its enforcement to answer RQ1: Is the local network
permission implemented securely? Next, we inspect how
widespread local network access is in apps and study how
the situation differs between iOS and Android by performing
a large-scale analysis of apps available on both platforms.
We dynamically analyze 10,862 apps present on both plat-
forms to answer RQ2: How prevalent is local network
access in apps? We further investigate the information of
the permission prompts, where developers can provide a
rationale explaining why access is requested. We extract
these messages and analyze their contents to answer RQ3:
Which concepts constitute the permission prompts? Finally,
we perform an online user study with 150 participants to
shed light on the users’ understanding of the local network
permission and their awareness of threats in this context to
ultimately answer RQ4: What is the user’s understanding of
these concepts?
In summary, we make the following contributions:
• We demonstrate two methods to bypass the permission

and show that the protected local IP address range of the
permission is insufficient.

• We analyze 10,862 cross-platform apps, out of which 152
iOS and 117 Android apps access the local network, and
show differences between both platforms.

• We identify reoccurring concepts in permission prompts
and present insights into the developer-specified purposes.

• We show that nearly every participant (83.11%) is aware
of at least one threat but also that misconceptions are
widespread, as 84.46% hold at least one.

Artifacts. For reproducibility and to enable future work,
we publish our code to study the permission, analyze apps,
extract and label permission messages, and evaluate the
results at: https://github.com/SecPriv/local network.

2. Background and Motivation

In this section, we give an overview of what we consider
as a local network, provide threats posed by apps that can
access the local network, and discuss the permission on iOS
protecting the local network access.

2.1. Local Network

We consider the WiFi network to which a mobile phone
is connected to as the local network. This is not restricted
to users’ home network but can also be, e.g., a company
network or the WiFi of a café.
Accessible Devices. Connected devices, like the phone
itself, have an IP address assigned within the subnet mask
of the network. However, depending on the network setup,
devices with local IP addresses outside of the subnet mask
may also be reachable. Hence, threats that affect devices
within the subnet mask also apply to locally reachable
devices outside the subnet mask. Therefore, we consider
them as part of the local network.
Virtual Private Networks (VPNs). In Section 3, we also
consider VPNs connected to the phone as similar to a local
network. Technically, VPNs are not a local network, but the
security and privacy threats we consider also apply to de-
vices within VPNs. Devices within local networks and VPNs
are typically not reachable from the Internet. However, they
are still accessible from other devices within the network.
For VPNs, threats can even have worse consequences, as
companies use VPNs for internal services.

2.2. Threat Model

Security. Devices connected to a local network are usually
not directly accessible from the Internet as a firewall protects
them. However, they are still accessible on the local network.
Thus, malicious apps running on a user’s phone can try
to attack other devices on the local network [58], [94].
This is in particular a concern in smart homes, as Internet
of Things (IoT) devices are often configured with default
passwords and rarely updated, a fact heavily exploited by
IoT malware [2], [4].
Location. Local network access also brings threats to the
user’s privacy. Apps can use the router’s MAC address
to look up location information in online databases [67],
[88]. In the past, apps used that to bypass the location
permission [77], [78]. If an app observes the devices in
the user’s local network, it can infer location changes and
behavior patterns since local networks differ in terms of used
IP addresses and connected devices.
Advertisements. Knowledge about connected devices can
be relevant for advertisements (ads) agencies. They could
decide which ads to show based on the devices on the local
network. In online discussions, users raised concerns that
AliExpress might use local network information for this pur-
pose [83]. Also, users might not want to share which devices

https://github.com/SecPriv/local_network

they own with every app, e.g., health-related devices with
insurance apps. We have seen that websites use information
about users’ devices to show different prices, e.g., charging
Apple users more, so-called personal pricing [47]. With
local network access, other devices connected to the local
network might also influence the prices, making it harder
to bypass. Cross-device and cross-user tracking is another
privacy threat, as local network information gathered on
different devices connected to the same network can be used
to link users [48]. Device names of connected devices can
be sensitive as well, e.g., if users use their real name [59].
Misconceptions. In a congress hearing, the TikTok CEO
was asked if TikTok accesses other devices on the WiFi
network. Online users argued that the questioner did not
understand how WiFi networks work as the app needs it
to access the Internet. This shows that there is a lack of
understanding of the local network with its security and
privacy implications [54], [93]. If this misconception is
widespread, malicious apps could exploit it to trick users
into granting permission. For example, apps could tell their
users that they require local network access to download
large files via WiFi, and if they do not grant it, it could lead
to additional costs when downloaded via cellular Internet.

2.3. Permission Overview

Terminology. Android restricts apps from accessing specific
data or performing actions through permissions. There exist
two major types of permissions: (1) Install-time permissions,
granted by the system upon app installation if apps declare
them [9], and (2) runtime permissions, also called dangerous
permissions, which require user confirmation [9].

There are similar concepts on iOS. Apps can declare
entitlements to gain additional capabilities, which iOS grants
upon installation [25]. However, if apps access so-called
protected resources, they require user consent [29]. For
handling the consent request and keeping track of the user
decisions, the Transparency, Consent, and Control (TCC)
framework is responsible [35], [52]. In the following, we use
the term permissions for actions that require user consent.
Otherwise, we state it explicitly.
Local Network Permission on iOS. According to Apple,
all outgoing traffic to a local network, multicast, and broad-
cast addresses requires the local network permission [19].
Technically, iOS does the permission check at the lowest
system level, and thus, it should include all network APIs.
Apple mentions that they plan to extend the permission to
incoming multicast and broadcast traffic [19], but have not
yet implemented it as of iOS 18 (released in 2024).

An exception to the permission are Bonjour services
provided by the OS for AirPlay and printing. Bonjour is
a zero-configuration protocol that allows the discovery of
devices and services on the local network. Apple argues
that those methods do not reveal any network details to
the apps; Thus, they do not require the permission [19].
AirPlay is integrated into different parts of iOS to offer
functionalities to stream audio or video to other devices on

the local network, e.g., the iOS media player and webviews
send such requests when playing a video [14]. However,
this does not trigger the permission, as the local network
information is not provided to the app.

Compared to other iOS permissions, the process to
request the local network access permission differs, which
could influence the user’s understanding. App developers
cannot request permission directly. Instead, the OS asks
the user to grant permission if an app tries to access the
local network for the first time [30]. All further attempts
to access the local network do not trigger the permission
prompt. Users can only change their decision in the settings
or have to reinstall the app [18].

To help users understand why apps require the local
network permission, app developers can add descriptions to
the permission request. If developers do not provide a so-
called permission rationale (also named permission purpose
string), iOS shows the default message “This app will be
able to discover and connect to devices on the networks
you use.” along a description always provided by the system
“[App name] would like to find and connect to devices on
your local network.”
Lack of Permission on Android. Android, as of version
15 (released in 2024), does not have a comparable local
network access permission. While the CHANGE_WIFI_-
MULTICAST_STATE [8] permission exists that allows apps
to receive multicast messages, Android ranked its protection
level as "normal"; thus, it is an install-time permission
and does not require user confirmation [9]. Moreover, apps
can still send messages to the local network without holding
this permission, as it only restricts apps from receiving
multicast messages [11].

3. Permission Implementation

First, we test when iOS enforces the local network per-
mission to gain further insights into its implementation and
answer RQ1: Is the local network permission implemented
securely? To do so, we systematically try to access different
addresses through various methods.

3.1. Methodology

To gain insights when iOS enforces the local network
permission, we developed a test app. The app tries to contact
different broadcast, local network, and multicast addresses.
Additionally, we varied the methods to access the network to
see if the permission is enforced for all network APIs [19].

We installed the test app on an iPhone 8 running iOS 16
(released in 2022) jailbroken with palera1n [71]. We used
tcpdump [100] on the phone to capture its traffic. Moreover,
we connected the phone to a VPN to test the protection of
the VPN address space for which the same security threats
apply. To ensure the jailbreak did not influence our findings
and that they still exist in later versions, we retested them
manually on an iPhone SE 2020 that was not jailbroken
running iOS 17.3 (released in 2024).

We tried to cover as many methods to perform local
network requests as possible. Therefore, we consulted Ap-
ple’s developer documentation [24]. In total, we identified
16 different methods that allowed us to perform ICMP,
TCP, UDP, and QUIC requests. In addition to the explicitly
mentioned protocols in the Frequently Asked Questions
(FAQ) [19] (TCP and UDP), we included ICMP to test a
different Internet layer and QUIC for another transport layer
protocol. For each method, we attempted to contact different
addresses: local addresses within and outside the connected
WiFi network mask, IPv4 and IPv6 multicast addresses,
IPv4 broadcast addresses, and local IPv6 addresses. In
Section A.1, we provide an overview of tested addresses,
and in Table 1 the methods we used.

We included local IPv6 addresses in our tests despite the
address space of 2128. On the one hand, scanning the whole
address space by contacting each address is not practical. On
the other hand, if an app learns the addresses of connected
devices, they are well suited for user tracking, as different
networks likely use different combinations of addresses.
IPv6 could be especially suited for tracking if hosts generate
their addresses using stateless autoconfiguration based on
MAC addresses [101]. On local IPv6 networks, multicasts
and neighbor discovery exist to find devices. However, we
could not test sending neighbor discovery messages, as iOS
restricts app access to raw sockets [21].

To identify the tested method in the traffic dump, we
performed a GET request to a remote server under our
control, containing a test ID in the URL path before and
after each test case. We executed our test app twice, once
granting permission to ensure the app sends the request and
once denying it to observe if it is enforced.

3.2. Results

Based on our systematic tests to trigger the local network
permission, we not only found two methods that bypass it
(Section 3.2.1), but also that the protected address space is
insufficient (Section 3.2.2), as well as a lack of rationales
(Section 3.2.3). Table 1 summarizes our results.

3.2.1. Permission Bypass. We discovered that iOS does
not correctly enforce the local network permission for two
methods that allow including web content in apps (so-called
webviews). Compared to Android webviews, for which se-
curity and privacy aspects have been well studied [36], [37],
[68], iOS offers different types of webview components with
different levels of embedding within the host app.
SFSafariViewController. The SFSafariViewController [32]
is part of the SafariServices framework and is similar to a
Safari window within the app. Apple advises using it to visit
external websites [17]. The opened website cannot directly
send data back to the app or execute code from the app.
However, the website loaded within those components could
scan the local network, retrieve privacy-sensitive data by
communicating with connected devices or attack connected
devices [1], [53]. Thus, the same threat model also applies
to websites and their running code [60].

TABLE 1: Results of tested methods. é indicates that the
app sent the request without the permission, thus bypassing
it. − indicates that Apple intended that the functionality did
not require permission even if it accessed the local network.
Ë indicates that iOS correctly enforced the permission. No
symbol means that sending such a request was impossible.
Local means the local address was within the connected
WiFi’s subnet, and local outside outside of it.

Protocol Methods Local Local Multi- Broad-
outside cast cast

ICMP SimplePing [15] Ë é

QUIC NWConnection Ë é Ë Ë

TCP

NSURLConnection Ë é
NWConnection Ë é
SendTo Ë é
SFSafariViewController é é
UIWebview Ë é
URLSession Ë é
WKWebView é é

UDP

AirPlay −
AirPrint −
NetServiceBrowser Ë
NSBonjourServices Ë
NWConnection Ë é Ë Ë
SendTo Ë é Ë Ë
ServiceBrowser Ë

WKWebView. WebViews allow embedding web content di-
rectly into an app and can interact with the app [17]. In iOS 8
(released in 2014), Apple added the WKWebView [34], to
replace the older UIWebView [33]. The UIWebView has
been deprecated since iOS 12 (released in 2016). We found
that iOS correctly enforces the permission for the deprecated
UIWebView, in contrast to the recommended WKWebView.
With WKWebViews, apps can load their own JavaScript
code from the app and send the retrieved information back
to the app. For example, they could try to load web content
from devices connected to the local network; in the case of
the Philips Hue bridge, this reveals its device type, and, if
the path /description.xml is also accessed, its model
and serial number. The behavior directly contradicts Apple’s
developer FAQ, which states that the permission is required
for all outgoing traffic, including WKWebView [19].

Case Study: Browsers. Since Apple required third-party
web browsers to build upon WebKit [73], they also used
WKWebView to render web content. Thus, they can bypass
the permission. With Google Chrome [50], Opera [69],
Microsoft Edge [64], and Brave [39], it is possible to
observe the WKWebView permission bypass. To load the
web content in the webview, they send a GET request to
/favicon.ico to show an icon in the header bar if a
user visits a webpage within the local network. iOS loads
the page before the user allows it, since the web content
loaded with the WKWebView bypasses the permission. The
icon request is done outside the WKWebView and triggers
the permission dialogue. Other browsers like Safari [31] and

192.168.0.1/24192.168.1.1/24

192.168.1.10

192.168.0.1192.168.1.11 192.168.0.4
192.168.1.3

WAN: 192.168.0.100
LAN: 192.168.1.1

10.0.0.4VPN 10.0.0.3

10.0.0.1/24
192.168.1.8

Figure 2: Vulnerable local network example. The router
of the local network 192.168.1.1/24 forwards packets
to the 192.168.0.1/24 network. The iPhone with the
address 192.168.1.10 is also connected to a VPN. We
colored the network protected by the permission green
(dashed) and the addresses not protected red (dotted).

Firefox [66] bypass the permission too. However, as they
do not perform a request outside the webview, they do not
trigger the permission dialogue.

3.2.2. Insufficient Protection. The permission is also in-
sufficient for complex networks and VPNs. We observed
that apps can send messages to local addresses outside the
connected WiFi’s subnet mask without the permission.

Figure 2 shows an example of a vulnerable net-
work: The iPhone running the app connects to the WiFi
network 192.168.1.1/24. The router providing ac-
cess to the iPhone is also part of a different local
network, 192.168.0.1/24, and forwards traffic from
192.168.1.1/24. Since the permission only protects the
192.168.1.1/24 address space, apps can access devices
on 192.168.0.1/24, for which the same threats apply.
Additionally, if the iPhone connects to a VPN, the address
space of the VPN is also not protected by the permission.
Even if a VPN is technically not a local network, the same
security and privacy threat apply: Devices not reachable
from the Internet become accessible.

In general, the permission protects access to addresses
within the subnet mask of the connected WiFi. That means
the protected addresses might not be enough in a complex
network setup. In Section 4.3.2, we show that 23 iOS apps
tried to access local IP addresses outside the connected
network, highlighting the relevance of this finding.

3.2.3. Local Network Rationales. According to Apple’s
developer documentation, apps must provide a rationale
string (also called usage description) to explain why they
want to access a protected resource, and if they do not have
it, iOS blocks the app’s access [29]. We did not observe
this behavior regarding the local network, even if it is a
protected resource [27]. Apps can acquire local network
permission without a rationale. In the documentation of the
local network rationales, Apple weakens the requirement
by writing that rationales should be included when an
app accesses the local network. That might be due to the
difference in how to acquire the permission [27]. Other
permissions restrict apps from calling sensitive methods.
In contrast, for the local network permission, there is no

sensitive method per se, but the OS detects if an app tries
to contact the local network.

Bonjour methods are the most similar local network
related methods to other permission-protected methods. We
tested these with our test app, as they rely on multicast
messages. Apps need to specify Bonjour services in the
Info.plist with the key NSBonjourServices to use
those methods [28]. Bonjour service strings can be seen as
the name of the service to discover. Surprisingly, iOS also
does not enforce a local network rationale string for them.

3.2.4. Responsilbe Disclosure. After our disclosure, Apple
ensured us that they are working on fixing the bypass via
web components and the insufficient protection in complex
networks (reported in June 2022), but we have not been up-
dated about a solution (October 2024). For VPNs (reported
in April 2024), Apple did not share our point of view and
categorized it as expected behavior in August 2024.

Takeaways

To answer RQ1: Is the local network permission
implemented securely?, we showed:
• The iOS local network permission is not im-

plemented securely. Apps can bypass it using
SFSafariViewController and WKWebView.

• The protected address space is insufficient for
complex local networks and VPNs.

4. Permission Prevalence

After understanding the local network permission, we
study the current situation of local network access of apps.
Therefore, we dynamically analyze 10,862 cross-platform
apps each on iOS and Android to answer RQ2: How
prevalent is local network access in apps? In addition to iOS
apps, we analyze the same apps on Android to compare their
local network access behavior, which we suspect to differ
due to the lack of comparable permission on Android.

4.1. Dataset

To study the prevalence of the local network permission
in apps, we analyze iOS and Android apps. For better
comparability, we focused on apps that are available on
both platforms, so-called cross-platform apps, by using
the approach from Steinböck et al. [95], which identifies
matching app pairs within iOS and Android datasets by
comparing metadata like app names, and app descriptions.
Additionally, they compare to the matches from Google’s
migration API, which we used to find further app pairs.

For iOS, we tried downloading the 10,000 most pop-
ular apps based on user ratings and 10,000 random apps,
resulting in 19,847 successfully downloaded iOS apps. Our
initial dataset for Android consists of 19,333 apps, where
we attempted to download the 9,629 most popular apps
based on the number of downloads (at least 10 million

installations) and 10,000 randomly selected apps. To find
out what apps exist, we used the Androzoo dataset [3]. We
downloaded both popular and randomly chosen apps to get
a holistic representation of what users are confronted with
in their daily lives, as well as potential edge cases. We could
not download all apps because of geographical blocking by
developers or device constraints [61].

Using the above-mentioned matching approach [95],
we identified 11,405 cross-platform app pairs: 3,047 apps
were already within our sample datasets, further 8,358
matching Android apps the migration API identified and
we successfully downloaded 7,815 of them. Hence, our final
dataset consists of 10,862 app pairs.

4.2. Methodology

We decided to use dynamic analysis to study the local
network access of apps. Compared to other permissions,
it is not enough to analyze if specific methods are used,
as there is no predefined list of methods that require this
permission (see Section 2.3). Apps could use various net-
work functionalities to communicate with the local network,
which can be found in nearly every app. Also, there is a
wide range of possibilities to obtain or use local network
addresses, e.g., if apps want to obfuscate it, they can use
numerical values. Since we aim to compare the behavior
of iOS and Android apps, and the static detection of local
network access is challenging, we opted for an approach that
works on both platforms. By dynamically executing apps
and observing their network traffic, we can detect access
for iOS and Android apps using the same methodology.
This approach is similar to how iOS triggers the permission
prompt, i.e., by checking the destination of outgoing net-
work traffic. For iOS apps, we further statically extracted the
local network permission rationales and the Bonjour strings
required for Bonjour multicast methods to study their usage.
Additionally, we used the extracted rationales in Section 5
to analyze the concepts provided by developers.

For the dynamic analysis, we set up a test infrastructure
to run experiments and automatically interact with apps
while capturing traffic to detect local network accesses.

4.2.1. Test Infrastructure. Our test network consisted of a
router (Asus AC750), four IoT devices, mobile phones, and
a Mac mini (M1, 2020) running macOS 12.5. We connected
four IoT devices (Google Chromecast [49], Amazon Alexa
speaker [5], Philips Hue [72], and Ikea Trådfri [56]) to
observe if apps try to interact with them. We used the Mac
mini to manage the interaction with the apps.

To capture the traffic and detect local network access, we
ran tcpdump [100] on the phones. We jailbroke four iPhones
running iOS 16 (released in 2022) using palera1n [71] and
rooted three Pixel 6a running Android 13 (released in 2022)
with Magisk [63]. If we found any local network access, we
performed a second test round to ensure it originated from
the app and that it was no background traffic from the OS.
We only considered apps accessing the local network if they
did so consistently.

4.2.2. Automatic App Interaction. Previous work [41],
[78] used Android monkey [6] for dynamic testing to
randomly interact with an app. However, as discussed exten-
sively by related work [40], [85], [86], [106], this might not
be sufficient and may not cover relevant code. Therefore, we
use a systematic interaction approach that clicks through the
User Interface (UI) in a Depth-first search (DFS) manner.

We first ran each app for 30 seconds without interaction,
after which we performed 25 interactions to obtain more
context of the local network access. An app accessing the
local network after an interaction might need it to provide
functionality, e.g., to send a command to an IoT device or
find other players in a game. Accessing the local network
on startup is more suspicious. According to Android’s
developer documentation [10], it is a bad privacy practice
to immediately collect privacy-sensitive data, even if apps
potentially require the information later on.

We implemented our app interaction in Python and used
Appium [13] to locate and interact with elements on the
phone’s screen. We automatically performed 25 interaction
steps with each app; a step is one action, e.g., a button
pressed. We chose 25 steps as a tradeoff between execution
time and coverage. The interactions followed a DFS explo-
ration strategy. The interactor saved information about what
it had already visited and the interactions it performed. If
an interaction led to a new state, the interactor continued
there. If it had tried all available interactions, it attempted
to go back to the previous state. A state consisted of the
currently available UI elements.

We accepted all iOS permissions the app asked for,
not only in the interaction phase but also during the non-
interaction phase, as we cannot observe local network access
without consenting to the iOS permission. We did not con-
sider the interaction with system dialogues as an interaction
step, as it is not a direct interaction with the app. This is in
line with our approach on Android, for which we granted
all permissions using adb [7] before starting an app.

4.2.3. Rationales and Bonjour Strings. Developers
can add their custom permission rationale messages
with the key NSLocalNetworkUsageDescription
to the Info.plist and the localization files called
InfoPlist.strings. Also, apps declare the Bonjour
service strings required for Bonjour methods in the property
list file (see Section 3.2.3). We developed a Python script
using the plistlib library [75] and regular expressions to
extract these values from the property list. In Section 4.3.1,
we use it to study their occurrences. In Section 5, we further
analyze the concepts used in the permission rationales.

4.3. Results

We evaluate different aspects of local network access.
We split them up based on the type of access: (1) broadcast,
(2) directly contacting a local address, and (3) multicast.
We analyze when the access happens, directly after the
start or after user interaction, and show what local network
addresses outside the connected WiFi apps try to contact.

4.3.1. Local Network Accesses. We found local network
accesses in 152 (1.4%) iOS and 117 (1.08%) Android apps.
In Table 2, we provide an overview of accesses.

Access Types. The reason why we found more iOS apps
accessing the local network is because of multicast mes-
sages. We found them in 117 iOS and 73 Android apps. In
contrast, we found more Android apps contacting broadcast
and local addresses. We encountered 44 iOS and 53 Android
apps using broadcasts, while 18 iOS and 24 Android apps
directly contacted a local address. A reason why we found
more iOS apps using multicast could be the support for
Bonjour multicasts. Evaluating the multicast types based on
the addresses, we found the multicast DNS (mDNS) address
224.0.0.251 that Bonjour uses in 98 (83.76% of apps
using multicasts) iOS apps, while we found it in 50 (68.49%)
Android apps. The multicast address we observed the most
for Android apps is 239.255.255.250, which is related
to Simple Service Discovery Protocol (SSDP). We found it
in 38 (32.48%) iOS and 56 (76.71%) Android apps.

We consider AirPlay as local network access of the
OS and not the app. As mentioned in Section 2.3, it does
not trigger a permission request as no sensitive data is
accessible by the app. Further, we found that playing audio
or video triggered iOS to send AirPlay mDNS requests
in the background. We also observed similar behavior in
Android, which sent mDNS requests to find Google cast
devices. Therefore, we do not treat this as app traffic but
OS related. Consequently, we did not include it in the local
network accesses. Overall, we observed this behavior in 401
(3.69%) iOS and 308 (2.84%) Android apps.

On iOS, we found 14 apps that triggered the permission,
but we could not observe any local network accesses in the
traffic. We manually analyzed them and found that two apps
tried to contact their own WiFi IP address. In that case, the
OS does not forward it to the WiFi interface but only to
the loopback interface. Apps might do this to trigger the
permission request, as done by Apple’s example code [22].
One app is the dictionary app Linguee, which runs a local
server and communicates over the local WiFi IP address,
triggering the permission. This could hint at a security issue,
as Tang et al. [98] and Wu et al. [107] showed that apps
can be vulnerable if they run wrongly configured servers
accessible from other devices. For neither of the other 12
apps, we could find local network access in the traffic dump.
While we found reports of requests to remote endpoints with
port 10161 triggering the permission [105], we could not
reproduce it on a current iOS version. We do not include
those 14 apps as accesses to the local network as we could
not observe any local network traffic, and the threats we
analyze in this paper all require access to other devices on
the local network.

Access Phases. We further analyzed when apps access
the local network. More Android apps (75.21%) than iOS
(65.13%) already accessed the local network before any
user interaction. The iOS permission could have influenced
those differences since it makes it transparent when apps
access the local network for the first time. We found 70 apps

TABLE 2: Number of apps that accessed the local network.
The Local column indicates apps that sent a message to
another local address, while Broadcast and Multicast show
apps that sent respective messages. The All column provides
the apps that used any of these methods. The numbers in
the Total rows are relative to the dataset size. The �� shows
apps that accessed the local network without any interaction,
while those in only did so after an interaction. The
percentages refer to their total number of accesses.

All Broadcast Local Multicast

Total 152 (1.40%) 44 (0.41%) 18 (0.17%) 117 (1.08%)

�� 99 (65.13%) 22 (50.00%) 7 (38.89%) 84 (71.79%)
 53 (34.87%) 22 (50.00%) 11 (61.11%) 33 (28.21%)

ð
Total 117 (1.08%) 53 (0.49%) 24 (0.22%) 73 (0.67%)

�� 88 (75.21%) 34 (64.15%) 16 (66.67%) 63 (86.30%)
 29 (24.79%) 19 (35.85%) 8 (33.33%) 10 (13.70%)

that access it on both platforms: 13 Android apps (18.57%)
access it before any interaction, while the corresponding iOS
apps only do so after an interaction. In contrast, five iOS
apps (7.14%) access the local network upon opening, while
their Android counterparts do so only after an interaction. 42
apps (60%) access it on both platforms without interaction,
and 10 apps (14.29%) only after an interaction.

Case Studies. We manually classified the apps that access
the local network. Overall, most apps are companion apps
for IoT devices (112, 56.28%), followed by video apps
(17, 8.54%), and apps for events (16, 8.04%). We provide
further details in Section A.2. We found apps from other
categories less often, e.g., two shopping apps, a dating app,
and a crypto wallet on Android access the local network.
As we could not think of any use cases for them, we
manually analyzed them. We observed local network access
only in the Android version of all four apps and they all
have Alibaba libraries in common. The apps perform an
ARP scan of the connected WiFi after the app launches
the first time. While they scan the network when the user
opens them the first time, we did not observe this behavior
consistently afterward. The code responsible for scanning is
heavily obfuscated with encryption and reflection. We could
not find any local network information in the traffic. Online
users suspected AliExpress uses it for advertisement [83].

The TanTan dating app’s privacy policy is the only one
that relates to accessing the local network. They mention
collecting “device network information,” and information
about the “device environment” [99]. We translated the pol-
icy using Google Translate, as the original page is Chinese.
The fact that we did not find their counterpart iOS apps
accessing the local network could be due to the permission,
which makes the first access transparent, as there were
also reports of the iOS AliExpress app accessing the local
network in the past [83].

We performed another case study on the Among Us
game app. It uses Universal Plug and Play (UPnP) to find
other players. The app searches for other players immedi-

ately after opening on both platforms. If it finds any UPnP
device in the network, it retrieves more information about
it. In our test network, that were the Philips Hue bridge and
Google Chromecast, which leak sensitive information. For
example, the Philips Hue bridge returns the model name,
model number, and serial number. All this information could
be used by apps for ads and tracking.
Rationales and Bonjour Services. In our dataset, we
found 727 (6.69%) apps with permission rationales, and
586 (5.39%) that declared a Bonjour string. Of those, 69
(11.77%) apps did not declare a rationale. Of all the iOS
apps we found triggering the local network permission, 98
(61.25% of triggered permissions) apps declared a permis-
sion rationale, and 62 (38.75%) apps did not.

We discovered 27 apps that sent Bonjour mDNS mes-
sages but did not declare a Bonjour string, contradicting
the documentation. We manually analyzed them and found
that 8 (29.63%) apps were published before the string was
required or targeted an older iOS version. We assume iOS
does not enforce it for them for backward compatibility.
17 (62.96%) apps used a library for Google Cast that did
not use any built-in Bonjour method. Instead, they relied
on a custom implementation. iOS checks the Bonjour string
only for the system methods. Thus, those apps bypassed
this check. One app (3.7%) tried to communicate with a
local domain name (domain name ending with .local).
iOS internally uses Bonjour to find the IP addresses of
local domains, but since the app did not use the Bonjour
method, it also did not require the string. Lastly, the Philips
Hue [92] app (3.7%), an IoT companion app, used a system
method that requires the string but did not declare it. The
app received updates frequently and targeted a current iOS
version. We were not able to reproduce this with a test
app and reported our findings to Apple in April 2024, who
categorized it as expected behavior in August 2024.

4.3.2. Local Addresses Outside the Subnet. We found
a similar number of iOS and Android apps that trying to
contact local network addresses outside the connected local
subnet. In total, we found 23 (0.21%) iOS and 22 (0.2%)
Android apps exhibiting such a behavior. Nine apps did it
across the platforms, 14 apps only on iOS, and 13 apps only
on Android.

We found different reasons for this behavior: There were
IoT companion apps that tried to contact their corresponding
devices at a specific hard-coded address [89]. For example,
the Android smart camera apps 4K CAM and Uniden 720
Link tried to reach their devices at 192.168.1.1 if the
user did not input any address. Even though both apps were
from different developers, they shared the same code for
accessing the address, which could be a sign of a rebranded
device. In other apps, we consider the contacted addresses to
be development artifacts or bugs. For example, we observed
that the Android app Door Entry CLASSE300X, belonging
to a smart door lock and surveillance system, performed
an ARP scan of a /23 network space, even if connected
to a /24 network. The scan of the wrong network space
happened because of a development bug when calculating

the network mask. While the Android app scanned the local
network after launch, we did not observe the corresponding
iOS app accessing the local network as it did not access the
local network before a user logged in, which could be due
to the permission.

Takeaways

To answer RQ2: How prevalent is the local network
permission?, we showed:
• 117 iOS and 152 Android apps in our dataset

access the local network.
• Over half of the apps access the local network on

start. iOS apps do this less often than Android
apps, which could be an effect of the permission.

• Apps try to contact local addresses outside the
connected subnet, highlighting the relevance of
our finding regarding the limited protection of
local network addresses in Section 3.

5. Permission Rationales

After understanding the technical aspects of the per-
mission and the local network access of apps, we in-
vestigate users’ ability to make informed decisions about
the local network permission. When an app requests it,
users are presented with a rationale composed of a system-
generated description and a message that developers can set
to explain why the app needs this permission. A default
message is shown if developers do not provide a custom
one. These messages are mostly all the information users
get before deciding whether to grant the permission or
not [38]. Investigating the content of these messages helps
us understand what information goes into a user’s decision-
making process. Thus, we perform a content analysis on
rationales to answer RQ3: which concepts constitute the
permission rationales?

5.1. Methodology

As a first step, we automatically extracted rationales
from iOS apps in our dataset, as already described in Sec-
tion 4.2.3. We filtered these strings to only include the
first rationale in German and English, as these are the
languages in which all involved researchers are proficient.
Furthermore, we used the Google Translate library [51] to
translate the default language used by the app to English,
leaving us with up to three rationales.

Next, three researchers independently coded a sample of
100 rationales. We aimed to identify the concepts rationales
contain that we deem crucial for users’ understanding to
make an informed decision. One researcher coded all 100,
while the other two coded 50 rationales each, meaning
that two researchers coded each message. After this initial
coding round, all researchers compared their codes, merged
codebooks, and discussed potential disagreements.

All involved researchers agreed that most rationales
follow a simple structure, often using similar compositions.

TABLE 3: Our codebook to categorize the rationales. We assigned a code if we found one of the keywords in a rationale.
The column # Apps shows the number of rationales with the code, related to the total 727 apps with rationales.

Code Keywords # Apps

device interaction device, devices, camera, cameras, gopro, speaker, speakers, tv, tvs, product, pc, pcs, iphone, ipad, server,
servers, hngrynsite, computer, macos, car, vehicle, smart home, fritzbox, receiver, razorlink, printer, printers

539 (74.14%)

local network local network, networks you use, lan, local area network 524 (72.08%)
discovery discover, detecting, detect, discovering, search, find, finding, searching, scan, scanning, identify, identifying 371 (51.03%)
your network your network, your wifi, your local network, your wi-fi, your local gateway, your gateway 348 (47.87%)
casting cast-enabled, cast-capable, stream, cast-compatible, cast, chromecast-enabled, chromecast, screen mirroring 294 (40.44%)
WiFi network wifi, wi-fi, wireless lan 275 (37.83%)
development artifact debug, debugging, testing, developer, proxyman 32 (4.40%)
gaming player, multiplayer, multi-player, in-game, game, two-player, players 30 (4.13%)
location dependent network in-store, around you, nearby 25 (3.44%)
improve user experience experience, improve, improved, enhance, enhanced, optimize, optimized, optimizing, improving, enhancing,

personalized, personalize, stable connection
24 (3.30%)

network knowledge tcp-network, tcp, udp, dns, voip, bonjour 22 (3.03%)
Internet connection internet 4 (0.55%)
network quality testing test the quality 3 (0.41%)

Also, all identified concepts are explicitly contained in
the message, meaning that we can use a keyword-based
approach to code our dataset [70]. Hence, we developed
a keyword list for each code in our codebook. If a rationale
contained one keyword from the list, we automatically
assigned the corresponding code. Thus, one rationale can
have multiple codes assigned. For example, we labeled
the rationale “The app uses the local network to set up
and control your connected devices.” with the codes local
network, and device interaction, as it contains the keywords
local network, and devices. We refined our keyword lists by
looking into rationales for which no matching keyword was
found and checking randomly-selected coded rationales. We
iterated the processes of coding and refining until we found
no new terms to add to the keyword lists, and only rationales
without meaningful content remained uncoded. Further, to
check that we did not miss prevailing concepts, we com-
puted a count of each word in the rationale messages, which
yielded no new concepts. We provide the full codebook and
final list of keywords in Table 3 along with the number of
rationales each code got assigned to. We used this codebook
as the basis for a content analysis, with the goal of deriving
the concepts constituting the permission rationales.

5.2. Results

In our dataset, 727 (6.69%) apps contain a permission
rationale. We report the concepts we identified during the
content analysis and their occurrences in rationales based
on our keyword-based approach.
Local Network. The most prominent concept we encoun-
tered was that of a local network. 81.02% of apps with
a rationale referred to some form of local network. We
found this across all different types of apps and use cases.
Rationales primarily used the terminology local network or
the acronym LAN, while several also referred directly to
the wireless variant, e.g., WiFi or wireless LAN. A large
portion of apps, 348 (47.87%), used terminology implying
some form of ownership of the network in question by
including the word your, i.e., your network or your WiFi. A

smaller portion, 28 (3.85%), used the phrase networks you
use, which might point users towards the technical reality,
where all networks a device is subsequently connected
to are affected by the permission. Finally, 25 rationales
(3.44%) employed terminology referring to physical proxim-
ity. Expressions such as around you and nearby suggest that
devices close to the user’s phone are somehow affected by
the permission, even though proximity does not necessarily
imply they are part of the same network.

Device Interaction. The second major concept permission
rationales contained was device interaction with 539 men-
tions (74.14%). This comprises any kind of communication
with another device, e.g., TVs, IoT devices, or phones. The
most common use cases for this interaction were discovering
other devices and casting video or audio. Often, these con-
cepts appeared in conjunction. Other use cases were generic
interactions of transferring data or simply connecting to
other devices. However, if discovering other devices was
given as the main reason for requesting the permission, we
also often found that no specific follow-up interaction was
described. That means it was unclear what the app was doing
with the gathered information and users are left to infer the
specific use case from the app’s purpose.

Niche Use Cases. We further identified rationales referring
to other use cases without including specific mentions of
other devices. None of these use cases was present in more
than 5% of rationales. The most frequent one was gaming
(4.13%), i.e., searching for other players. 3.30% of apps
promised an improved user experience if the permission
was granted. Mostly, this was done without explaining how
exactly it was accomplished. Four apps in our dataset stated
to require the permission to access the Internet, which is not
correct since iOS does normally not restrict Internet access.
Finally, three rationales gave testing the network quality as
their reason for requiring the permission.

Network Knowledge. 22 apps (3.03%) required some net-
work knowledge to process, as they included technical ab-
breviations such as TCP, or VoIP. By looking at the provided
text, it became apparent that eleven of these messages,

along with 21 others, were artifacts from development. This
finding suggests that either the developers failed to remove
these messages from the published version of their software,
or that the app includes a dedicated debugging mode.

Takeaways

To answer RQ3: Which concepts constitute the per-
mission prompts?, we showed:
• The most common concept is local network.
• To make an informed decision, users often need to

understand what casting is, as well as which im-
plications discovering other devices (i.e., scanning
the network) can have.

• Alarmingly, the terminology in many rationales
can be potentially misleading by limiting the
scope (your network), creating false associations
(devices nearby), or outright fueling misconcep-
tions (Internet access).

6. Users’ Permission Comprehension

After establishing the information users are presented
with, we need to answer RQ4: What is the user’s under-
standing of these concepts? We need to understand users’
perception of the relevant concepts in order to establish their
capability to make an informed decision. We investigate
iOS users’ knowledge of the permission and draw out their
perception of the underlying technology using an online
survey. Furthermore, we measure how widespread selected
misconceptions are.

6.1. Methodology

As a necessary prerequisite to investigate iOS users’
understanding of the local network permission, we derive
the underlying concepts that are important for a correct
understanding. Furthermore, we compose a list of common
misconceptions to quantify how widespread they are and
investigate users’ awareness of common threats resulting
from apps having local network accesses, as we discussed
in Section 2.2.

6.1.1. Concepts Important for Understanding. We deter-
mined the fundamental concepts behind the local network
permission through an expert brainstorming session. Three
researchers met and discussed the results obtained from the
content analysis of rationale messages (see Section 5.2).
Two had a strong background in mobile security, the other
one was experienced with usable security research. From
this session, we derived the following concepts:
• Boundaries: a network’s topology, i.e., which devices

belong to the same local network, which are outside of it.
• Transitivity: the local network of a mobile device can

change while it moves from place to place. The permis-
sion is granted once and then applies to all local networks.

• Proximity: devices physically close to each other are not
necessarily part of the same network.

6.1.2. Misconceptions. To identify common misconcep-
tions, three researchers independently conducted an online
search on Google for the term “local network permission.”
We limited our search to the most commonly used platforms
for tech-related problems: Reddit, StackOverflow, and X
(formerly Twitter). The researchers then combined their
findings into one coherent list. We include every miscon-
ception encountered at least once.

The most frequent beliefs we observed were that apps re-
quire the local network permission for using Bluetooth [103]
or to access the Internet via WiFi [80], [104]. Some thought
that apps could obtain the WiFi password [84] if granted
the permission. Finally, people expressed that denying the
permission can prevent other devices on the network from
seeing their phone [82].

6.1.3. Survey Design. We used Qualtrics [76] to create
our survey. We opted for a questionnaire consisting of
mostly closed-ended questions. Doing so allows us to cover
participants’ knowledge of all relevant concepts, and to
quantify how widespread misconceptions are. All that while
still keeping the survey short to avoid fatigue.

Structure. The final questionnaire can be accessed online.1
We first asked participants whether they knew what the local
network is, and if they confirmed, we asked them to explain
it in their own words. Next, we presented all participants
with a multiple-choice question about the local network. A
second multiple-choice question asked which use cases out
of a given list would require an app to request the local
network permission.

After this initial assessment of participants’ general
knowledge of local networks and the corresponding per-
mission, we introduced a brief scenario, which serves as a
reference for the remaining questions. For this, we designed
a mock-up screenshot of a fictional app displaying the
local network permission prompt, while showing the app’s
login screen in the background. A short text informed
participants about the scenario, asking them to imagine that
they just installed a new video-based social media app,
which prompted them with the given permission request
upon first launch.

We chose this setup as streaming to cast-enabled devices
was a prominent use case in the permission rationales apps
provided (see Section 5). We designed the scenario to be
as realistic as possible. Hence, our mock-up app mimics a
social media platform used by millions of people daily. We
went with a fictional app to avoid biases towards existing
systems, e.g., whether users trust or like an app. We included
the default permission rationale message along with the
system-generated description to establish a baseline.

After outlining the scenario as a reference for the
remainder of the survey, we presented participants with a
series of statements, divided into three blocks. For each
statement, participants had to decide whether it is true or

1. Final survey questionnaire designed with Qualtrics [76] in our artifact:
https://github.com/SecPriv/local network/blob/main/survey.pdf

https://github.com/SecPriv/local_network/blob/main/survey.pdf

false. We also included an “I don’t know” option, to dis-
courage guessing. Each block began with a short reminder
text about the scenario. The survey tool randomized the
order of statements within each block for every participant
to mitigate learning or unwanted side-effects.

The first block had participants imagine themselves in
their own homes, connected to their WiFi. It consisted of
nine statements: six covering a different threat model each,
two covering misconceptions, and one filler statement. We
made sure to include a mix of true and false statements
to not give away the correct answer to participants. The
second block continued the scenario with the user leaving
their home and walking down the street, not being connected
to any WiFi network. The three statements in this block
covered the concepts of boundaries, transitivity, and proxim-
ity, respectively. In the third block we asked participants to
imagine themselves sitting in a café or working in an office,
with the phone being connected to the WiFi networks of
these respective places. Of the six statements in this block,
three concerned the concepts of transitivity, and two the
concept of boundaries, while one was a filler statement.

Finally, we measured our participants’ tech-savyness us-
ing the Affinity for Technology Interaction (ATI) scale [45]
and collected demographic information, including technol-
ogy background, and the iOS version they use. To ensure the
quality of our dataset, we concluded the survey by asking
participants if they had answered all questions carefully, and
if they wanted their data to be included in our study. We ac-
companied this with a brief description of the importance of
reliable data for scientific progress and assured participants
that they will receive their compensation regardless of their
response. In addition, we used the multiple-choice questions
and the ATI scale as sanity checks, flagging participants who
selected “non of the above” plus other items for the former,
or chose 1 or 5 for all items on the latter.

6.1.4. Recruitment. We chose Prolific [74] as a service
provider for recruiting participants, as it has shown to deliver
high quality results in related work [96]. Before launching
our study, we refined the survey through pilot testing. First,
we asked friends and colleagues to review our questionnaire
and worked out any misunderstandings. In this stage, we
approached both tech-savvy individuals, as well as those
without a technical background. Then, we advertised the
study on prolific for a small sample of ten participants to
pilot test in a realistic setting, offering 4£ for compensation.
We did not include these responses in the final data set
since we adapted one question based on the responses we
received. We also used this second pilot test to get a solid
estimate of the time it takes to complete. Finally, we opened
our study on Prolific for 150 participants. The number is
above 121 participants required for a 99.9% confidence
interval assuming 50% of the population knows the correct
answers, considering a 15% margin of error, which is in
line with related work [65] on iOS permissions. We applied
the following criteria to participants: (1) above 18 years of
age, (2) uses iOS devices, and (3) currently resides in the
US. We advertised the survey as a study on iOS permissions,

without mentioning security or privacy to minimize selection
bias. During our study, two people aborted the study before
completing it. Prolific filled up the quota with additional
participants. We offered 2£ of compensation for an estimated
duration of 12 minutes.

Ethics. Our institution’s Ethical Research Board (ERB)
approved the study design. We only collect necessary data,
and we store and process them in line with the General Data
Protection Regulation (GDPR). Before starting the survey,
we presented participants with a consent form detailing
all information regarding data collection, their rights w.r.t.
consent withdrawal, and the contact information of a re-
sponsible researcher. Only after explicitly providing consent,
participants are forwarded to the survey.

6.1.5. Data Analysis. We evaluated multiple-choice ques-
tions by counting the number of correct answers. For
single-choice questions, we counted how many participants
answered them correctly, incorrectly, or responded with “I
don’t know.” Some concepts and threats are covered by
multiple questions. In those cases, we counted answers as
correct if all questions were answered correctly, as incorrect
if at least one was wrong, and as not sure otherwise. We
evaluated all discrepancies between answers manually.

To draw comparisons, we divided participants into two
groups, one with and one without knowledge of what a local
network is. For grouping we used the answers to the question
“Do you know what a local network is?” We asked par-
ticipants who responded with “Yes” to briefly describe the
concept in their own words. Based on these descriptions we
redistributed participants to the group without knowledge.
Two researchers independently grouped each open-ended
response w.r.t. the participants’ understanding: one of people
with no or an incorrect understanding of local networks, and
the other one with a correct understanding. We used Cohen’s
Kappa [55] to measure the inter-rater agreement. Afterward,
we discussed and resolved disagreements.

To measure the influence of a person’s understanding of
what a local network is on their ability to correctly answer
questions about it, we performed a T-test and calculated
the effect size using Cohen’s d. We performed χ2 tests to
study the differences between the groups and their answers
regarding concepts, threats, and misconceptions.

For all tests, we stated the null hypothesis H0 as “There
is no difference between the two groups” and the alternative
hypothesis H1 as “There is a difference.” We rejected H0

for resulting p-values below the significance level of 0.05.

6.2. Results

First, we provide a general overview of our participants,
followed by insights into their understanding of the local
network and its permissions. We then detail common threats
and misunderstandings. We provide an overview of our
results and how they split up into participants with and
without local network knowledge in Table 4.

TABLE 4: Results of our user study. The total columns reflect results from all 148 participants. The local network knowledge
and no knowledge columns break down the data into groups based on whether we categorized participants as having an
understanding of local networks. We related the numbers to the group sizes. For chi-squared tests marked with *, we focused
only on correct and incorrect answers since fewer than five participants were unsure.

Total (N = 148) Local Network Knowledge (N = 71) No Knownledge (N = 77) χ2 Test

Correct Wrong Unsure Correct Wrong Unsure Correct Wrong Unsure χ2 p ϕ

C
on

ce
pt

s

Boundaries 91 (61.49%) 24 (16.22%) 33 (22.30%) 42 (59.15%) 14 (19.72%) 15 (21.13%) 49 (63.64%) 10 (12.99%) 18 (23.38%) 1.24 0.54 0.09
Proximity 88 (59.46%) 27 (18.24%) 33 (22.30%) 48 (67.61%) 12 (16.90%) 11 (15.49%) 40 (51.95%) 15 (19.48%) 22 (28.57%) 4.49 0.11 0.17
Transitivity-1 Base 112 (75.68%) 24 (16.22%) 12 (8.11%) 65 (91.55%) 5 (7.04%) 1 (1.41%) 47 (61.04%) 19 (24.68%) 11 (14.29%) *9.51 <0.01 0.26
Transitivity-1 34 (30.09%) 64 (56.64%) 15 (13.27%) 20 (30.77%) 33 (50.77%) 12 (18.46%) 14 (29.17%) 31 (64.58%) 3 (6.25%) *0.22 0.64 0.05
Transitivity-2 Base 108 (72.97%) 28 (18.92%) 12 (8.11%) 60 (84.51%) 10 (14.08%) 1 (1.41%) 48 (62.34%) 18 (23.38%) 11 (14.29%) *19.18 <0.01 0.14
Transitivity-2 26 (23.85%) 55 (50.46%) 28 (25.69%) 15 (25.00%) 29 (48.33%) 16 (26.67%) 11 (22.45%) 26 (53.06%) 12 (24.49%) 0.24 0.89 0.05

T
hr

ea
ts

Cross-user Tracking 75 (50.68%) 39 (26.35%) 34 (22.97%) 35 (49.30%) 19 (26.76%) 17 (23.94%) 40 (51.95%) 20 (25.97%) 17 (22.08%) 0.12 0.94 0.03
Device Profiling 76 (51.35%) 35 (23.65%) 37 (25.00%) 45 (63.38%) 10 (14.08%) 16 (22.54%) 31 (40.26%) 25 (32.47%) 21 (27.27%) 9.46 0.01 0.25
Exposing Devices 84 (56.76%) 20 (13.51%) 44 (29.73%) 41 (57.75%) 9 (12.68%) 21 (29.58%) 43 (55.84%) 11 (14.29%) 23 (29.87%) 0.10 0.95 0.03
Location Profiling 74 (50.00%) 37 (25.00%) 37 (25.00%) 40 (56.34%) 18 (25.35%) 13 (18.31%) 34 (44.16%) 19 (24.68%) 24 (31.17%) 3.55 0.17 0.15
At Least One 123 (83.11%) 21 (14.19%) 4 (2.70%) 62 (87.32%) 7 (9.86%) 2 (2.82%) 61 (79.22%) 14 (18.18%) 2 (2.60%) *1.47 0.23 0.10

M
is

co
nc

ep
t. Bluetooth 63 (42.57%) 73 (49.32%) 12 (8.11%) 28 (39.44%) 42 (59.15%) 1 (1.41%) 35 (45.45%) 31 (40.26%) 11 (14.29%) *1.83 0.18 0.12

Internet Access 48 (32.43%) 88 (59.46%) 12 (8.11%) 29 (40.85%) 41 (57.75%) 1 (1.41%) 19 (24.68%) 47 (61.04%) 11 (14.29%) *1.86 0.17 0.12
Visible Phone 32 (21.62%) 85 (57.43%) 31 (20.95%) 18 (25.35%) 42 (59.15%) 11 (15.49%) 14 (18.18%) 43 (55.84%) 20 (25.97%) 2.89 0.24 0.14
WiFi Password 76 (51.35%) 24 (16.22%) 48 (32.43%) 39 (54.93%) 10 (14.08%) 22 (30.99%) 37 (48.05%) 14 (18.18%) 26 (33.77%) 0.81 0.67 0.07
No Misconception 21 (14.19%) 125 (84.46%) 2 (1.35%) 9 (12.68%) 61 (85.92%) 1 (1.41%) 12 (15.58%) 64 (83.12%) 1 (1.30%) *0.07 0.79 0.02

TABLE 5: Demographics of our final 148 participants, all
currently reside in the US. This is after we excluded two
participants from our dataset who did not want their data
to be included or failed attention checks. We recruited a
balanced sample in terms of gender, age, and IT background,
with the majority running the latest iOS versions.

Demographics Participants (%)

Female 89 (60.14%)
Male 57 (38.51%)
Non-binary 2 (1.35%)

18 - 24 years 35 (23.65%)
25 - 34 years 52 (35.14%)
35 - 44 years 35 (23.65%)
45 - 54 years 15 (10.14%)
55 - 64 years 8 (5.41%)
>= 65 years 3 (2.03%)

IT Background 72 (48.65%)
No Background 76 (51.35%)

iOS 17 96 (64.86%)
iOS 16 23 (15.54%)
iOS 15 9 (6.08%)
iOS 14 3 (2.03%)
iOS 13 5 (3.38%)
<= iOS 12 3 (2.03%)
Not Sure 9 (6.08%)

Permission Seen 116 (78.38%)
Permission Not Seen 16 (10.81%)
Not Sure 16 (10.81%)

6.2.1. Overview of Participants. We removed two par-
ticipants from our study, resulting in a total number of
148 participants. One did not wish for their answers to be
included, and one chose the same option for each item on the
ATI scale, which indicates careless responding. On average,
it took the participants 9 minutes and 58 seconds to fill out
our survey. Most participants are between 25 and 34 years
old (35.14%). The majority are female (60.14%), and almost

half declared to have an IT background (48.65%). The mean
ATI score is 3.46 (sd = 0.87), which is around the general
population’s average [45]. The most frequently used iOS
version among participants is iOS 17 (64.86%), i.e., the
latest version at the time of our study released in 2023,
and 78.38% declared that they have seen the local network
permission before. In Table 5, we provide further details on
the demographics of our participants, their background and
the iOS version they are using.

6.2.2. Local Network Understanding. Out of 148 par-
ticipants, 31 (20.94%) stated that they do not know what
the local network is, while the remaining 117 provided
explanations. The inter-rater agreement on whether an expla-
nation demonstrated a correct understanding of the concept
was 0.82, considered almost perfect [55]. After reaching a
consensus, we classified 71 responses as correct, leaving 46
incorrect responses, resulting in 77 participants without a
correct understanding.

We tested whether our classification impacted the an-
swers about local network knowledge and whether an IT
background influenced the classification. With a one-sided
T-test, we found a significant difference between the groups
we classified and their score on the local network control
questions (p < 0.001, effect size = 0.88), which supports
the validity of our classification. Of the people with an
IT background, we classified 58.33% as having a correct
understanding, while for people without a background, the
same was true for 38.16%. The χ2 test shows a significant
difference between the groups (χ2 = 5.24, p = 0.02,
ϕ = 0.18).

6.2.3. Concepts. We observed that the concept of transitiv-
ity is the most challenging for users to understand. First, we
asked if a use case is possible at home after granting the
permission, e.g., to discover other devices connected to the
network. Later, we asked similar questions again in the café

and office scenarios. We evaluated if people who correctly
answered the question in the home scenario recognized that
access would also transfer to other local networks. We split
up the evaluation into two parts, as we had two use cases
for which we repeated the question in the scenarios. As the
results are similar and the second is better suited for χ2

tests, we only refer to those results, but both are included
in Table 4 (in the Appendix). 72.97% of the participants
answered the base question correctly. Only 23.85% had the
follow-up question in other locations correct, and 50.46%
answered at least one of them incorrectly. Having a local
network understanding did not improve the ability to answer
the transitivity concept correctly. The knowledge helped to
get the base question right, 84.51% vs. 63.64% (χ2 = 19.18,
p < 0.01, ϕ = 0.14). However, when comparing the
follow-up questions among those who answered the baseline
correctly, both groups answered similarly. Of the group with
knowledge, 25% answered it correctly, 48.33% wrong, and
26.67% were unsure, compared to 22.45% correct, 53.06%
wrong, and 24.49% unsure in the other group.

More participants understood the concept of network
boundaries and the related proximity concept. Overall,
61.49% answered the question about network boundaries
correctly, while 16.22% answered it wrong. We asked two
questions to test the understanding that devices in physically
proximity do not have to be part of the same network. Both
scenarios took place outside on the street, and we asked
if the app could communicate with a smart TV inside a
shop or another person’s phone passing by. 59.46% correctly
answered both questions, 22.30% were unsure what to
answer, and 18.24% had at least one of the answers wrong.
To improve the understanding, iOS could ask permission
again for every new local network the app tries to access.
This would make it transparent to the users to which local
network the app has access to, allowing them to make
individual decisions.

6.2.4. Threats. We asked participants about four threats
coming from local network access: (1) exposing devices,
(2) inferring the location, (3) cross-user tracking, and (4)
device identification. On a positive note, for each threat,
at least half of the participants displayed some sort of
awareness. Most participants knew that devices protected
by a firewall are still reachable from within the network,
56.76% correctly answered the respective questions, while
29.73% were unsure.

Further, we tested the knowledge about device detection
within the local network with two questions. One question
was general, while the other explicitly asked about sensitive
devices, e.g., security cameras or health-related devices. In
total, 51.35% could correctly respond. Additionally, 14.19%
knew about the general case but were unsure about sensitive
devices, and 9.46% were not sure about both questions. Fi-
nally, 50.68% correctly identified the possibility to perform
cross-user tracking by linking users together based on local
network information, 26.35% did not deem that possible
while the rest were unsure.

We also asked two questions about inferring a users
location: one about the possibility of obtaining the approx-
imate location, e.g., through the router’s MAC address, and
one about inferring location changes based on differences
in the connected network. Half of the participants got both
questions right, and 25% had at least one answer wrong.
Considering the latter, users seem to be more aware of the
potential to estimate a location based on network informa-
tion, as 13.51% correctly responded, but they were unsure
about the other. In contrast, only 3.38% of respondents
were unsure about the approximate location but knew of
the possibility of tracking changes.

Device detection is the only threat for which we ob-
served that users with local network knowledge did signif-
icantly better (χ2 = 9.46, p < 0.01, ϕ = 0.25). 63.38% of
the group with an understanding of the local network were
aware of it, compared to 40.26% of those without. Positively,
we observed that even without being able to explain the local
network correctly, participants were aware of threats coming
from apps having access. Even if the consequences might
not be that obvious compared to other permissions, 83.11%
of participants knew of at least one threat.

6.2.5. Misconceptions. Despite many of our participants
having a technical background and an understanding of the
local network, we observed that misconceptions are com-
mon. Nearly everyone (84.46%) had at least one misconcep-
tion about the permission. The most common misconception
is that apps require local network access to access the
Internet (59.46%), closely followed by the belief that phones
are not visible within the local network if the permission is
denied (57.43%). Nearly half of the participants (49.32%)
think that apps require it for Bluetooth communication. The
only misconception less widespread is that the permission
allows retrieving the WiFi password (16.22%).

Surprisingly, we observed that the group with local
network knowledge did not perform significantly better. The
misconception about Bluetooth was even more widespread
(59.15% vs. 40.26%) among those with local network
knowledge, while all others were similarly common: Internet
access 57.75% vs. 61.04%, phone visibility 59.15% vs.
55.84%, and WiFi password 14.08% vs. 18.18%.

Rationales. Malicious apps could exploit misconceptions
to trick users into accepting the permission by mentioning
misconceptions in the rationales. However, exploring the
effect requires further user studies. In Section 5, we found
four apps mentioning Internet in their rationales, e.g., one
app states “This app requires an Internet connection to
access your account data and vehicle features. Your local
network will be used when cellular data is not available.”,
which could trick users into giving permission. However,
it could also be that the app accidentally triggers the
permission, e.g., a library, and developers themselves suffer
from the misconception. To avoid misconceptions, Apple
could check if rationales contain keywords hinting towards
misconceptions before releasing the app on the App Store.

Takeaways

To answer RQ4 What is the user’s understanding of
these concepts?, we showed:
• Even participants with a general understanding

of the local network did not know about all the
concepts required to make an informed decision.

• Misconceptions about the local network permis-
sions are widespread. Developers could exploit
this to trick users into accepting the permission.

We recommend prompting for permission on each
distinct WiFi. This behaviour is more in line with
users’ expectations and would allow them to make
better informed decisions.

7. Limitation and Future Work

Our work faces limitations and offers opportunities for
future work. For the internal workings of the protected
resources for network access, we rely on Apple’s developer
documentation. This might not cover all methods to access
the local network and thus miss other bypasses. Future work
could reverse engineer the iOS implementation of TCC to
study the internal permission handling. It is yet unclear how
Apple will handle the local network permission for browsers
that are not based on WebKit, after being required to allow
other engines in Europe due to the EU’s Digital Markets
Act [43], [73]. As we have found permission bypasses in
webview-related components, this and other permissions’
enforcement is worth exploring. Furthermore, Apple an-
nounced the extension of the local network permission in
macOS 15 (released in 2024) [26], prompting questions
about its enforcement on this platform as well.

Our large-scale local network access study has limi-
tations inherent to dynamic analysis. Apps might detect
that they are analyzed and behave differently than they
normally would [87], [109]. Our dynamic interactor might
not trigger functionalities that lead to local network access,
e.g., functionality available only after login or verification.
Thus, our numbers are a lower bound. We accept all
permissions. However, declining permissions might lead to
different behavior regarding local network accesses [77].
It also remains unclear if and what data apps share with
external parties about the local network and the devices
within it. During our manual analysis, we found apps that
we suspect of doing so, but we could not confirm it due to
obfuscation. Future work could leverage data flow analysis
to track data coming from the local network.

Bonjour services, like AirPlay, do not trigger the permis-
sion, potentially confusing users as to why some function-
ality does not require permission [81]. Also, AirPlay can
use Bluetooth to discover nearby devices [23] potentially
influencing the Bluetooth misconception. Follow-up work
could study the misconceptions further and their influences
on users’ decisions on granting permission in depth.

Finally, we focused our user study on iOS users. Study-
ing Android users’ understanding of the local network

could gain further insights into the permission’s impact
and overall effectiveness, as well as on how to design
a similar permission for Android. Finally, our sample of
users residing in the US might hinder the generalizability
to other user groups with diverse backgrounds, also in light
of regional differences in terms of privacy regulations and
awareness. One complementary direction for future work is
the automated mining of iOS and Android app store reviews,
which has shown promise in providing a broad picture of
users’ perceptions of apps’ functionality [44] and [90].

8. Related Work

Local Network Access. Kuchhal and Li [60] performed
a large-scale empirical investigation of websites’ local net-
work accesses. Other work [1], [12], [53] investigated how
websites could scan the local network and attack connected
devices. We investigate mobile apps instead of websites.
We expect different access behavior for mobile apps: (1)
there are legitimate use cases for it (e.g., companion apps
controlling their IoT devices, or mirroring the screen to a
monitor), and (2) in iOS, a permission guards the access.

Sivaraman et al. [94] demonstrated how forged apps
could attack devices on the local network. Königs et al. [59]
showed privacy implications of zero configuration protocols
if they reveal device names by local network communi-
cation. In addition to user information, they can reveal
sensitive device information, like the OS version, which
attackers can use to find known vulnerabilities, as shown by
Geneiatakis et al. [46]. Tang et al. [98] identified vulnerable
UPnP libraries in 13 apps by analyzing network services in
iOS apps and the reuse of vulnerable libraries. In contrast,
we focus on the preceding step, which is the local network
access of apps and the permission guarding it on iOS.

Girish et al. [48] analyzed how IoT devices and mobile
apps communicate via the local network. By executing
Android apps they detected app libraries that scanned the
local network. Further, they showed that household finger-
printing and cross-device user tracking are possible using
multicast protocols, like mDNS or UPnP. On the contrary,
we study the permission on iOS, its impact, and the users’
understanding of local network accesses.
Permission Analysis. Reardon et al. [78] found Android
apps bypassing permissions with side and covert channels.
To find those, they executed the apps in an instrumented
environment. Yeke et al. [108] and Tileria et al. [102] identi-
fied cross-platform privacy leaks between smartwatches and
Android apps for which the Android permission model is
not sufficiently designed. In comparison, we focused on the
local network permission, which does not exist on Android
and differs from other permissions.

Previous work on permission rationales investigated
mostly Android apps. Liu et al. [62] showed that especially
permissions which are difficult to understand were insuf-
ficiently covered by rationales. Elbitar et al. [42] discov-
ered that purpose messages can assist users with making
informed decisions but also highlighted that the clarity of a
message’s content is highly subjective.

Tan et al. [97] studied the effect of developer-provided
rationales on iOS in 2014. At the time of their study, most
messages (98.3%) informed the users about benefits when
granting the permission. Shen et al. [91] investigated to
what extent permission rationales can help users understand
the scope of a permission. They covered all available per-
missions on Android and iOS, which at the time did not
include the local network permission. Their results suggest
that only a small fraction of users can correctly infer an
app’s capabilities after granting a permission. Most recently,
Mohamed et al. [65] studied the app tracking transparency
permission rationales. They identified so-called dark patterns
that apps use to trick users into granting permissions. In
contrast, we study users’ local network understanding and
misconceptions of its permission, a prerequisite to analyzing
dark patterns, which we leave for future work.

9. Conclusion

We identified two iOS components that can bypass the
permission and that the protection for complex networks
and Virtual Private Network (VPN) is insufficient. With
our dynamic analysis, we showed that the permission po-
tentially influences when apps access the local network.
We found more iOS apps accessing the local network than
Android apps, which is likely caused by Bonjour, a multicast
protocol by Apple. Further, we found apps using Bonjour
methods without declaring a service string, thus bypassing
a requirement of their usage. With our content analysis of
permission rationales, we show that it is vital to have an
understanding of what a local network is to make sense
of most messages. Building on that, we studied users’
understanding of the permission, threats coming from local
network access, and misconceptions. Positively, we found
that nearly every participant (83.11%) was aware of at
least one threat. However, misconceptions were even more
widespread (84.46% had at least one), which could help
malicious apps to trick users into granting permission.

Acknowledgments

We thank Paul Hager for his preliminary work on local
network scanning on Android. This material is based on
research supported by the Vienna Science and Technol-
ogy Fund (WWTF) and the City of Vienna [Grant ID:
10.47379/ICT19056 and 10.47379/ICT22060], the Austrian
Science Fund (FWF) [Grant ID: 10.55776/F8515-N], the
Austrian Federal Ministry of Labour and Economy, the
National Foundation for Research, Technology and Devel-
opment, and the Christian Doppler Research Association,
and SBA Research (SBA-K1), a COMET Centre within the
framework of COMET – Competence Centers for Excellent
Technologies Programme and funded by BMK, BMDW, and
the federal state of Vienna. The COMET Programme is
managed by FFG.

References

[1] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster,
“Web-based Attacks to Discover and Control Local IoT Devices,”
in Proc. of the Workshop on IoT Security and Privacy (IoT S&P),
2018. DOI: 10.1145/3229565.3229568.

[2] A. A. Al Alsadi, K. Sameshima, J. Bleier, K. Yoshioka, M.
Lindorfer, M. Van Eeten, and C. H. Gañán, “No Spring Chicken:
Quantifying the Lifespan of Exploits in IoT Malware Using Static
and Dynamic Analysis,” in Proc. of the 17th ASIA Conference on
Computer and Communications Security (ASIACCS), 2022. DOI:
10.1145/3488932.3517408.

[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting Millions of Android Apps for the Research Commu-
nity,” in Proc. of the 13th International Conference on Mining
Software Repositories (MSR), 2016. DOI: 10 . 1145 / 2901739 .
2903508.

[4] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Z. Snow, F.
Monrose, and M. Antonakakis, “The Circle Of Life: A Large-
Scale Study of The IoT Malware Lifecycle,” in Proc. of the 30th
USENIX Security Symposium, 2021.

[5] Amazon. “Amazon Alexa.” Archived at https://archive.is/2aUEx.
(2024), [Online]. Available: https://alexa.amazon.com/.

[6] Android Developers. “UI/Application Exerciser Monkey.”
Archived at https://archive.is/EuqsW. (Apr. 12, 2023), [Online].
Available: https://developer.android.com/studio/test/other-testing-
tools/monkey.

[7] Android Developers. “Android Debug Bridge.” Archived at http
s : / / archive . is / jJFBb, Version: 1.0.41. (Feb. 9, 2024), [Online].
Available: https://developer.android.com/tools/adb.

[8] Android Developers. “Manifest.permission.” Archived at https://
archive . is /LGldg. (Feb. 16, 2024), [Online]. Available: https : / /
developer .android .com/reference /android /Manifest .permission#
CHANGE WIFI MULTICAST STATE.

[9] Android Developers. “Permissions on Android.” Archived at https:
/ / archive . is / b21T7. (Mar. 7, 2024), [Online]. Available: https :
//developer.android.com/guide/topics/permissions/overview.

[10] Android Developers. “Request runtime permissions.” Archived at
https://archive.is/ujApe. (Apr. 1, 2024), [Online]. Available: https:
//developer.android.com/training/permissions/requesting.

[11] Android Developers. “WifiManager.MulticastLock.” Archived at
https : / / archive . is /SYYh7. (Feb. 16, 2024), [Online]. Available:
https://developer.android.com/reference/android/net/wifi/WifiMan
ager.MulticastLock.

[12] S. Antonatos, P. Akritidis, V. T. Lam, and K. G. Anagnostakis,
“Puppetnets: Misusing Web Browsers as a Distributed Attack
Infrastructure,” ACM Transactions on Information and System
Security, vol. 12, no. 2, Dec. 2008. DOI: 10 . 1145 / 1455518 .
1477941.

[13] “Appium.” Version: 2.4.1. (2024), [Online]. Available: http://appi
um.io.

[14] Apple. “About AirPlay.” Archived at https : / / archive . is /msqDt.
(Sep. 19, 2012), [Online]. Available: https://developer.apple.com/
library/archive/documentation/AudioVideo/Conceptual/AirPlayGu
ide/Introduction/Introduction.html.

[15] Apple. “SimplePing Example code.” Archived at https://archive.
is/7sEwR. (May 5, 2016), [Online]. Available: https://developer.
apple.com/library/archive/samplecode/SimplePing.

[16] Apple. “If an app would like to connect to devices on your local
network.” Archived at https://archive.is/ld7Z8. (Oct. 24, 2020),
[Online]. Available: https://support.apple.com/en-us/HT211870.

[17] Apple. “Should I use WKWebView or SFSafariViewController for
web views in my app?” Archived at https : / / archive . is /YLX1c.
(Oct. 8, 2020), [Online]. Available: https://developer.apple.com/
news/?id=trjs0tcd.

[18] Apple. “Local Network Privacy FAQ-13.” Archived at https : / /
archive.is/CyGqd. (2021), [Online]. Available: https://developer.
apple.com/forums/thread/663839.

[19] Apple. “Local Network Privacy FAQ-2.” Archived at https://arch
ive.is/Le8lh. (2021), [Online]. Available: https://developer.apple.
com/forums/thread/663874.

https://doi.org/10.1145/3229565.3229568
https://doi.org/10.1145/3488932.3517408
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://archive.is/2aUEx
https://alexa.amazon.com/
https://archive.is/EuqsW
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://archive.is/jJFBb
https://archive.is/jJFBb
https://developer.android.com/tools/adb
https://archive.is/LGldg
https://archive.is/LGldg
https://developer.android.com/reference/android/Manifest.permission#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission#CHANGE_WIFI_MULTICAST_STATE
https://archive.is/b21T7
https://archive.is/b21T7
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://archive.is/ujApe
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://archive.is/SYYh7
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock
https://doi.org/10.1145/1455518.1477941
https://doi.org/10.1145/1455518.1477941
http://appium.io
http://appium.io
https://archive.is/msqDt
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/AirPlayGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/AirPlayGuide/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/AirPlayGuide/Introduction/Introduction.html
https://archive.is/7sEwR
https://archive.is/7sEwR
https://developer.apple.com/library/archive/samplecode/SimplePing
https://developer.apple.com/library/archive/samplecode/SimplePing
https://archive.is/ld7Z8
https://support.apple.com/en-us/HT211870
https://archive.is/YLX1c
https://developer.apple.com/news/?id=trjs0tcd
https://developer.apple.com/news/?id=trjs0tcd
https://archive.is/CyGqd
https://archive.is/CyGqd
https://developer.apple.com/forums/thread/663839
https://developer.apple.com/forums/thread/663839
https://archive.is/Le8lh
https://archive.is/Le8lh
https://developer.apple.com/forums/thread/663874
https://developer.apple.com/forums/thread/663874

[20] Apple. “Local Network Privacy FAQ-8.” Archived at https://archi
ve.is/2xaE5. (2021), [Online]. Available: https://developer.apple.
com/forums/thread/663888.

[21] Apple. “Raw socket on iOS.” Archived at https://archive.is/kYAj7.
(2021), [Online]. Available: https://developer.apple.com/forums/
thread/653072.

[22] Apple. “Triggering the Local Network Privacy Alert.” Archived
at https : / / archive . is / oPzYd. (2021), [Online]. Available: https :
//developer.apple.com/forums/thread/663768.

[23] Apple. “Use AirPlay with Apple devices.” Archived at https : / /
archive . is /5R8ov. (Oct. 27, 2021), [Online]. Available: https : / /
support.apple.com/guide/deployment/use-airplay-dep9151c4ace.

[24] Apple. “Developer Documentation.” Archived at https://archive.
is/DKBNW. (2024), [Online]. Available: https://developer.apple.
com/documentation.

[25] Apple. “Entitlements.” Archived at https : / / archive . is / mep7b.
(2024), [Online]. Available: https : / / developer . apple . com /
documentation/bundleresources/entitlements.

[26] Apple. “Local Network Privacy FAQ.” Archived at https://archive.
is / rce8M. (Jul. 22, 2024), [Online]. Available: https : / / forums .
developer.apple.com/forums/thread/663858.

[27] Apple. “NSLocalNetworkUsageDescription.” Archived at https://
archive . is /zlwj0. (2024), [Online]. Available: https : / /developer .
apple.com/documentation/bundleresources/information property
list/nslocalnetworkusagedescription.

[28] Apple. “Property List Key - NSBonjourServices.” Archived at h
ttps : / / archive . is / FCSrW. (2024), [Online]. Available: https : / /
developer.apple.com/documentation/bundleresources/information
property list/nsbonjourservices.

[29] Apple. “Requesting access to protected resources.” Archived at
https : / / archive . is / Cin61. (2024), [Online]. Available: https : / /
developer . apple . com / documentation / uikit / protecting the user
s privacy/requesting access to protected resources/.

[30] Apple. “Requesting authorization to use location services.”
Archived at https://archive.is/L5MB9. (2024), [Online]. Available:
https : / / developer . apple . com / documentation / corelocation /
requesting authorization to use location services.

[31] Apple. “Safari.” Version: 8617.2.4.10.7. (2024), [Online]. Avail-
able: https://apps.apple.com/us/app/safari/id1146562112.

[32] Apple. “SFSafariViewController.” Archived at https://archive.is/
WVkDI. (2024), [Online]. Available: https://developer.apple.com/
documentation/safariservices/sfsafariviewcontroller.

[33] Apple. “UIWebView.” Archived at https://archive.is/tVkyn. (2024),
[Online]. Available: https://developer.apple.com/documentation/
uikit/uiwebview.

[34] Apple. “WKWebView.” Archived at https : / / archive . is / KM4rb.
(2024), [Online]. Available: https://developer.apple.com/document
ation/webkit/wkwebview.

[35] S. Ashenbrenner. “Full Transparency: Controlling Apple’s TCC.”
Archived at https : / / archive . is / v1s4s. (Jan. 16, 2024), [Online].
Available: https : / / www . huntress . com / blog / full - transparency -
controlling-apples-tcc.

[36] P. Beer, M. Squarcina, L. Veronese, and M. Lindorfer, “Tabbed
Out: Subverting the Android Custom Tab Security Model,” in Proc.
of the 45th Symposium on Security & Privacy (S&P), 2024. DOI:
10.1109/SP54263.2024.00105.

[37] P. Beer, L. Veronese, M. Squarcina, and M. Lindorfer, “The
Bridge between Web Applications and Mobile Platforms is Still
Broken,” in 3rd IEEE Workshop on Designing Security for the
Web (SecWeb), 2022.

[38] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft, “Exploring
Decision Making with Android’s Runtime Permission Dialogs
using In-context Surveys,” in Proc. of the 13th Symposium On
Usable Privacy and Security (SOUPS), 2017.

[39] Brave Software. “Brave Browser: Private VPN.” Version: 1.62.
(2024), [Online]. Available: https://apps.apple.com/us/app/brave-
browser-private-vpn/id1052879175.

[40] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?” In Proc. of the
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015. DOI: 10.1109/ASE.2015.89.

[41] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-Resilient Privacy Leak
Detection for Mobile Apps Through Differential Analysis,” in
Proc. of the 24rd Network and Distributed System Security Sym-
posium (NDSS), 2017. DOI: 10.14722/ndss.2017.23465.

[42] Y. Elbitar, M. Schilling, T. T. Nguyen, M. Backes, and S. Bugiel,
“Explanation Beats Context: The Effect of Timing & Rationales
on Users’ Runtime Permission Decisions,” in Proc. of the 30th
USENIX Security Symposium, 2021.

[43] European Parliament and the Council of the European Union,
“Regulation (EU) 2022/1925 of the European Parliament and of
the Council of 14 September 2022 on contestable and fair markets
in the digital sector and amending Directives (EU) 2019/1937 and
(EU) 2020/1828 (Digital Markets Act),” Official Journal of the
European Union, vol. 65, L265 Oct. 2022. [Online]. Available:
http://data.europa.eu/eli/reg/2022/1925/oj.

[44] M. Fassl, S. Anell, S. Houy, M. Lindorfer, and K. Krombholz,
“Comparing User Perceptions of Anti-Stalkerware Apps with the
Technical Reality,” in Proc. of the 18th Symposium On Usable
Privacy and Security (SOUPS), 2022.

[45] T. Franke, C. Attig, and D. Wessel, “A Personal Resource for
Technology Interaction: Development and Validation of the Affin-
ity for Technology Interaction (ATI) Scale,” International Journal
of Human–Computer Interaction, vol. 35, 6 2019. DOI: 10.1080/
10447318.2018.1456150.

[46] D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri,
and G. Baldini, “Security and Privacy Issues for an IoT Based
Smart Home,” in Proc. of the 40th International Convention
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2017. DOI: 10.23919/MIPRO.2017.
7973622.

[47] K. George. “Prices that change by the second: why shopping
around for deals online isn’t always worth it.” Archived at https:
/ /archive. is /7mw9i. (Dec. 11, 2022), [Online]. Available: https:
/ /www. theguardian .com/ lifeandstyle /2022/dec /12 /prices - that -
change- by- the- second- why- shopping- around- for- deals- online-
isnt-always-worth-it/.

[48] A. Girish, T. Hu, V. Prakash, D. J. Dubois, S. Matic, D. Y. Huang,
S. Egelman, J. Reardon, J. Tapiador, D. Choffnes, and N. Vallina-
Rodriguez, “In the Room Where It Happens: Characterizing Local
Communication and Threats in Smart Homes,” in Proc. of the 23rd
Internet Measurement Conference (IMC), 2023. DOI: 10 . 1145 /
3618257.3624830.

[49] Google. “Chromecast with Google TV.” (2024), [Online]. Avail-
able: https://store.google.com/us/product/chromecast google tv.

[50] Google. “Google Chrome.” Version: 122.0.6261.62. (2024), [On-
line]. Available: https://apps.apple.com/us/app/google- chrome/
id535886823.

[51] “Google Translate API for Python.” Version: 4.0.0rc1. (2024),
[Online]. Available: https://github.com/ssut/py-googletrans.

[52] HackTricks. “macOS TCC.” Archived at https://archive.is/JITyX.
(2024), [Online]. Available: https://book.hacktricks.xyz/macos-ha
rdening/macos-security-and-privilege-escalation/macos-security-
protections/macos-tcc/.

[53] M. Hazhirpasand and M. Ghafari, “One Leak is Enough to Expose
Them All: From a WebRTC IP Leak to Web-based Network Scan-
ning,” in Proc. of the 10th International Symposium on Engineering
Secure Software and Systems (ESSoS), 2018. DOI: 10.1007/978-
3-319-94496-8 5.

[54] J. Hendrix. “TikTok CEO Testifies to Congress.” Archived at https:
//archive.is/NjL0L. (Mar. 24, 2023), [Online]. Available: https://
www.techpolicy.press/transcript-tiktok-ceo-testifies-to-congress/.

[55] L. Hsu and R. Field, “Interrater Agreement Measures: Com-
ments on Kappan, Cohen’s Kappa, Scott’s π, and Aickin’s α,”
Understanding Statistics, vol. 2, Jul. 2003. DOI: 10 . 1207 /
S15328031US0203 03.

[56] IKEA. “IKEA Home smart app and TRÅDFRI gateway support.”
(2024), [Online]. Available: https://www.ikea.com/us/en/customer-
service/product-support/app-gateway/.

[57] X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni, “Under-
standing IoT Security from a Market-Scale Perspective,” in Proc.

https://archive.is/2xaE5
https://archive.is/2xaE5
https://developer.apple.com/forums/thread/663888
https://developer.apple.com/forums/thread/663888
https://archive.is/kYAj7
https://developer.apple.com/forums/thread/653072
https://developer.apple.com/forums/thread/653072
https://archive.is/oPzYd
https://developer.apple.com/forums/thread/663768
https://developer.apple.com/forums/thread/663768
https://archive.is/5R8ov
https://archive.is/5R8ov
https://support.apple.com/guide/deployment/use-airplay-dep9151c4ace
https://support.apple.com/guide/deployment/use-airplay-dep9151c4ace
https://archive.is/DKBNW
https://archive.is/DKBNW
https://developer.apple.com/documentation
https://developer.apple.com/documentation
https://archive.is/mep7b
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://archive.is/rce8M
https://archive.is/rce8M
https://forums.developer.apple.com/forums/thread/663858
https://forums.developer.apple.com/forums/thread/663858
https://archive.is/zlwj0
https://archive.is/zlwj0
https://developer.apple.com/documentation/bundleresources/information_property_list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/bundleresources/information_property_list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/bundleresources/information_property_list/nslocalnetworkusagedescription
https://archive.is/FCSrW
https://archive.is/FCSrW
https://developer.apple.com/documentation/bundleresources/information_property_list/nsbonjourservices
https://developer.apple.com/documentation/bundleresources/information_property_list/nsbonjourservices
https://developer.apple.com/documentation/bundleresources/information_property_list/nsbonjourservices
https://archive.is/Cin61
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/requesting_access_to_protected_resources/
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/requesting_access_to_protected_resources/
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/requesting_access_to_protected_resources/
https://archive.is/L5MB9
https://developer.apple.com/documentation/corelocation/requesting_authorization_to_use_location_services
https://developer.apple.com/documentation/corelocation/requesting_authorization_to_use_location_services
https://apps.apple.com/us/app/safari/id1146562112
https://archive.is/WVkDI
https://archive.is/WVkDI
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://archive.is/tVkyn
https://developer.apple.com/documentation/uikit/uiwebview
https://developer.apple.com/documentation/uikit/uiwebview
https://archive.is/KM4rb
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview
https://archive.is/v1s4s
https://www.huntress.com/blog/full-transparency-controlling-apples-tcc
https://www.huntress.com/blog/full-transparency-controlling-apples-tcc
https://doi.org/10.1109/SP54263.2024.00105
https://apps.apple.com/us/app/brave-browser-private-vpn/id1052879175
https://apps.apple.com/us/app/brave-browser-private-vpn/id1052879175
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.14722/ndss.2017.23465
http://data.europa.eu/eli/reg/2022/1925/oj
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.23919/MIPRO.2017.7973622
https://doi.org/10.23919/MIPRO.2017.7973622
https://archive.is/7mw9i
https://archive.is/7mw9i
https://www.theguardian.com/lifeandstyle/2022/dec/12/prices-that-change-by-the-second-why-shopping-around-for-deals-online-isnt-always-worth-it/
https://www.theguardian.com/lifeandstyle/2022/dec/12/prices-that-change-by-the-second-why-shopping-around-for-deals-online-isnt-always-worth-it/
https://www.theguardian.com/lifeandstyle/2022/dec/12/prices-that-change-by-the-second-why-shopping-around-for-deals-online-isnt-always-worth-it/
https://www.theguardian.com/lifeandstyle/2022/dec/12/prices-that-change-by-the-second-why-shopping-around-for-deals-online-isnt-always-worth-it/
https://doi.org/10.1145/3618257.3624830
https://doi.org/10.1145/3618257.3624830
https://store.google.com/us/product/chromecast_google_tv
https://apps.apple.com/us/app/google-chrome/id535886823
https://apps.apple.com/us/app/google-chrome/id535886823
https://github.com/ssut/py-googletrans
https://archive.is/JITyX
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-tcc/
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-tcc/
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-tcc/
https://doi.org/10.1007/978-3-319-94496-8_5
https://doi.org/10.1007/978-3-319-94496-8_5
https://archive.is/NjL0L
https://archive.is/NjL0L
https://www.techpolicy.press/transcript-tiktok-ceo-testifies-to-congress/
https://www.techpolicy.press/transcript-tiktok-ceo-testifies-to-congress/
https://doi.org/10.1207/S15328031US0203_03
https://doi.org/10.1207/S15328031US0203_03
https://www.ikea.com/us/en/customer-service/product-support/app-gateway/
https://www.ikea.com/us/en/customer-service/product-support/app-gateway/

of the 29th Conference on Computer and Communications Security
(CCS), 2022. DOI: 10.1145/3548606.3560640.

[58] Kaspersky. “Roaming Mantis implements new DNS changer in its
malicious mobile app in 2022.” Archived at https : / / archive . is /
3x4cG. (Jan. 19, 2023), [Online]. Available: https://securelist.com/
roaming-mantis-dns-changer-in-malicious-mobile-app/108464/.

[59] B. Könings, C. Bachmaier, F. Schaub, and M. Weber, “Device
Names in the Wild: Investigating Privacy Risks of Zero Configu-
ration Networking,” in Proc. of the 14th International Conference
on Mobile Data Management, 2013. DOI: 10.1109/MDM.2013.65.

[60] D. Kuchhal and F. Li, “Knock and Talk: Investigating Local
Network Communications on Websites,” in Proc. of the 21th
Internet Measurement Conference (IMC), 2021. DOI: 10 . 1145 /
3487552.3487857.

[61] R. Kumar, A. Virkud, R. S. Raman, A. Prakash, and R. Ensafi, “A
Large-scale Investigation into Geodifferences in Mobile Apps,” in
Proc. of the 31st USENIX Security Symposium, 2022.

[62] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, “A Large-
Scale Empirical Study on Android Runtime-Permission Rationale
Messages,” in Proc. of the Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2018. DOI: 10.1109/VLH
CC.2018.8506574.

[63] “Magisk: The Magic Mask for Android.” Version: v26.4. (2024),
[Online]. Available: https://github.com/topjohnwu/Magisk.

[64] Microsoft. “Microsoft Edge: KI-Browser.” Version: 122.2365.56.
(2024), [Online]. Available: https://apps.apple.com/us/app/micros
oft-edge-ki-browser/id1288723196.

[65] R. Mohamed, A. Arunasalam, H. Farrukh, J. Tong, A. Bianchi,
and Z. B. Celik, “ATTention Please! An Investigation of the App
Tracking Transparency Permission,” in Proc. of the 33rd USENIX
Security Symposium, 2024.

[66] Mozilla. “Firefox: Private, Safe Browser.” Version: 41973. (2024),
[Online]. Available: https://apps.apple.com/us/app/firefox-private-
safe-browser/id989804926.

[67] Mozilla. “Mozilla Location Service.” Archived at https://archive.
is/53NwD. (2024), [Online]. Available: https://location.services.
mozilla.com/.

[68] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View
To A Kill: WebView Exploitation,” in Proc. of the 6th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET),
2013.

[69] Opera. “Opera Browser.” Version: 4.5.0. (2024), [Online]. Avail-
able: https://apps.apple.com/us/app/opera-browser-with-vpn-and-
ai/id1411869974.

[70] A.-M. Ortloff, M. Fassl, A. Ponticello, F. Martius, A. Mertens,
K. Krombholz, and M. Smith, “Different Researchers, Different
Results? Analyzing the Influence of Researcher Experience and
Data Type During Qualitative Analysis of an Interview and Survey
Study on Security Advice,” in Proc. of the Conference on Human
Factors in Computing Systems (CHI), 2023. DOI: 10.1145/354454
8.3580766.

[71] “palera1n.” Version: v2.0.0-beta.8. (2024), [Online]. Available: ht
tps://palera.in/.

[72] Philips. “Hue Smart Lightning.” (2024), [Online]. Available: https:
//www.philips-hue.com.

[73] A. Pradeep, Á. Feal, J. Gamba, A. Rao, M. Lindorfer, N. Vallina-
Rodriguez, and D. Choffnes, “Not Your Average App: A Large-
scale Privacy Analysis of Android Browsers,” in Proc. of the 23rd
Privacy Enhancing Technologies Symposium (PETS), 2023. DOI:
10.56553/popets-2023-0003.

[74] “Prolific.” (2024), [Online]. Available: https://www.prolific.com/.
[75] Python. “Generate and Parse Apple .plist Files.” Version: 3.8.

(2024), [Online]. Available: https : / / docs . python . org / 3 / library /
plistlib.html.

[76] “Qualtrics.” (2024), [Online]. Available: https : / /www.qualtrics .
com/.

[77] J. Reardon. “The Curious Case of Coulus Coelib.” Archived at
https://archive.is/atF7n. (Apr. 6, 2022), [Online]. Available: https:
/ / blog . appcensus . io /2022 /04 /06 / the - curious - case - of - coulus -
coelib/.

[78] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-
Rodriguez, and S. Egelman, “50 Ways to Leak Your Data: An
Exploration of Apps’ Circumvention of the Android Permissions
System,” in Proc. of the 28th USENIX Security Symposium, 2019.

[79] Reddit. “Why is Instagram asking for access to devices on a local
network?” Archived at https://archive.is/3vE7w. (Dec. 13, 2020),
[Online]. Available: https://www.reddit.com/r/techsupport/comme
nts/kc67r3/why is instagram asking for access to devices on/.

[80] Reddit. “Access the Internet.” Archived at https://archive.is/HPZ
XU. (May 4, 2021), [Online]. Available: https://www.reddit.com/
r/MicrosoftTeams/comments/n4tkhs/comment/gwxgatv/.

[81] Reddit. “AirPlay.” Archived at https://archive.is/Z9YsS. (Mar. 9,
2021), [Online]. Available: https://www.reddit.com/r/ios/comment
s/m0vgqu/did google just bypass local network permission.

[82] Reddit. “Other Devices See Phone.” Archived at https://archive.
is/mu4zq. (Mar. 9, 2021), [Online]. Available: https://www.reddit.
com/r/ios/comments/m0vgqu/comment/gqb8v8c/.

[83] Reddit. “Why does AliExpress need access to my local network?”
Archived at https://archive.is/Nqw48. (Mar. 10, 2021), [Online].
Available: https://www.reddit.com/r/Aliexpress/comments/m1u2en
/why does aliexpress need access to my local/.

[84] Reddit. “WiFi Password.” Archived at https : / /archive. is /guiDq.
(Apr. 11, 2022), [Online]. Available: https://www.reddit.com/r/
Nest/comments/u0qgzw/comment/i49br82/.

[85] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and
N. Vallina-Rodriguez, “Bug Fixes, Improvements, ... and Privacy
Leaks - A Longitudinal Study of PII Leaks Across Android App
Versions,” in Proc. of the 25th Network and Distributed System
Security Symposium (NDSS), 2018. DOI: 10 . 14722 / ndss . 2018 .
23143.

[86] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon:
Revealing and Controlling PII Leaks in Mobile Network Traffic,”
in Proc. of the 14th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2016. DOI: 10.11
45/2906388.2906392.

[87] A. Ruggia, D. Nisi, S. Dambra, A. Merlo, D. Balzarotti, and
S. Aonzo, “Unmasking the Veiled: A Comprehensive Analysis of
Android Evasive Malware,” in Proc. of the 19th ASIA Conference
on Computer and Communications Security (ASIACCS), 2024.
DOI: 10.1145/3634737.363765.

[88] E. Rye and D. Levin, “Surveilling the Masses with Wi-Fi-Based
Positioning Systems,” in Proc. of the 45th Symposium on Security
& Privacy (S&P), 2024. DOI: 10.1109/SP54263.2024.00239.

[89] D. Schmidt, C. Tagliaro, K. Borgolte, and M. Lindorfer, “IoTFlow:
Inferring IoT Device Behavior at Scale through Static Mobile
Companion App Analysis,” in Proc. of the 30th Conference on
Computer and Communications Security (CCS), 2023. DOI: 10 .
1145/3576915.3623211.

[90] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi,
“An Investigation into Android Run-time Permissions from the End
Users’ Perspective,” in Proc. of the 5th International Conference on
Mobile Software Engineering and Systems (MOBILESoft), 2018.
DOI: 10.1145/3197231.3197236.

[91] B. Shen, L. Wei, C. Xiang, Y. Wu, M. Shen, Y. Zhou, and X. Jin,
“Can Systems Explain Permissions Better? Understanding Users’
Misperceptions under Smartphone Runtime Permission Model,” in
Proc. of the 30th USENIX Security Symposium, 2021.

[92] Signify Netherlands B.V. “Philips Hue.” Version: 4.39.0. (2024),
[Online]. Available: https://apps.apple.com/us/app/philips- hue/
id1055281310.

[93] C. Silva. “TikTok users’ favorite moments from the TikTok con-
gressional hearing.” Archived at https://archive.is/gfkIV. (Mar. 23,
2023), [Online]. Available: https: / /mashable.com/article/ tiktok-
congressional-hearing.

[94] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-Phones
Attacking Smart-Homes,” in Proc. of the 9th Conference on
Security & Privacy in Wireless and Mobile Networks (WISEC),
2016. DOI: 10.1145/2939918.2939925.

[95] M. Steinböck, J. Bleier, M. Rainer, T. Urban, C. Utz, and M. Lin-
dorfer, “Comparing Apples to Androids: Discovery, Retrieval, and
Matching of iOS and Android Apps for Cross-Platform Analyses,”

https://doi.org/10.1145/3548606.3560640
https://archive.is/3x4cG
https://archive.is/3x4cG
https://securelist.com/roaming-mantis-dns-changer-in-malicious-mobile-app/108464/
https://securelist.com/roaming-mantis-dns-changer-in-malicious-mobile-app/108464/
https://doi.org/10.1109/MDM.2013.65
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1109/VLHCC.2018.8506574
https://doi.org/10.1109/VLHCC.2018.8506574
https://github.com/topjohnwu/Magisk
https://apps.apple.com/us/app/microsoft-edge-ki-browser/id1288723196
https://apps.apple.com/us/app/microsoft-edge-ki-browser/id1288723196
https://apps.apple.com/us/app/firefox-private-safe-browser/id989804926
https://apps.apple.com/us/app/firefox-private-safe-browser/id989804926
https://archive.is/53NwD
https://archive.is/53NwD
https://location.services.mozilla.com/
https://location.services.mozilla.com/
https://apps.apple.com/us/app/opera-browser-with-vpn-and-ai/id1411869974
https://apps.apple.com/us/app/opera-browser-with-vpn-and-ai/id1411869974
https://doi.org/10.1145/3544548.3580766
https://doi.org/10.1145/3544548.3580766
https://palera.in/
https://palera.in/
https://www.philips-hue.com
https://www.philips-hue.com
https://doi.org/10.56553/popets-2023-0003
https://www.prolific.com/
https://docs.python.org/3/library/plistlib.html
https://docs.python.org/3/library/plistlib.html
https://www.qualtrics.com/
https://www.qualtrics.com/
https://archive.is/atF7n
https://blog.appcensus.io/2022/04/06/the-curious-case-of-coulus-coelib/
https://blog.appcensus.io/2022/04/06/the-curious-case-of-coulus-coelib/
https://blog.appcensus.io/2022/04/06/the-curious-case-of-coulus-coelib/
https://archive.is/3vE7w
https://www.reddit.com/r/techsupport/comments/kc67r3/why_is_instagram_asking_for_access_to_devices_on/
https://www.reddit.com/r/techsupport/comments/kc67r3/why_is_instagram_asking_for_access_to_devices_on/
https://archive.is/HPZXU
https://archive.is/HPZXU
https://www.reddit.com/r/MicrosoftTeams/comments/n4tkhs/comment/gwxgatv/
https://www.reddit.com/r/MicrosoftTeams/comments/n4tkhs/comment/gwxgatv/
https://archive.is/Z9YsS
https://www.reddit.com/r/ios/comments/m0vgqu/did_google_just_bypass_local_network_permission
https://www.reddit.com/r/ios/comments/m0vgqu/did_google_just_bypass_local_network_permission
https://archive.is/mu4zq
https://archive.is/mu4zq
https://www.reddit.com/r/ios/comments/m0vgqu/comment/gqb8v8c/
https://www.reddit.com/r/ios/comments/m0vgqu/comment/gqb8v8c/
https://archive.is/Nqw48
https://www.reddit.com/r/Aliexpress/comments/m1u2en/why_does_aliexpress_need_access_to_my_local/
https://www.reddit.com/r/Aliexpress/comments/m1u2en/why_does_aliexpress_need_access_to_my_local/
https://archive.is/guiDq
https://www.reddit.com/r/Nest/comments/u0qgzw/comment/i49br82/
https://www.reddit.com/r/Nest/comments/u0qgzw/comment/i49br82/
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/3634737.363765
https://doi.org/10.1109/SP54263.2024.00239
https://doi.org/10.1145/3576915.3623211
https://doi.org/10.1145/3576915.3623211
https://doi.org/10.1145/3197231.3197236
https://apps.apple.com/us/app/philips-hue/id1055281310
https://apps.apple.com/us/app/philips-hue/id1055281310
https://archive.is/gfkIV
https://mashable.com/article/tiktok-congressional-hearing
https://mashable.com/article/tiktok-congressional-hearing
https://doi.org/10.1145/2939918.2939925

in Proc. of the 21st International Conference on Mining Software
Repositories (MSR), 2024. DOI: 10.1145/3643991.3644896.

[96] M. Tahaei, R. Abu-Salma, and A. Rashid, “Stuck in the Per-
missions With You: Developer & End-User Perspectives on App
Permissions & Their Privacy Ramifications,” in Proc. of the
Conference on Human Factors in Computing Systems (CHI), 2023.
DOI: 10.1145/3544548.3581060.

[97] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thomp-
son, S. Egelman, and D. Wagner, “The Effect of Developer-
Specified Explanations for Permission Requests on Smartphone
User Behavior,” in Proc. of the Conference on Human Factors in
Computing Systems (CHI), 2014. DOI: 10.1145/2556288.2557400.

[98] Z. Tang, K. Tang, M. Xue, Y. Tian, S. Chen, M. Ikram, T.
Wang, and H. Zhu, “iOS, Your OS, Everybody’s OS: Vetting and
Analyzing Network Services of iOS Applications,” in Proc. of the
29th USENIX Security Symposium, 2020.

[99] TanTan. “Privacy Policy.” Archived at https://archive.is/iNhVo.
(Mar. 29, 2024), [Online]. Available: http : / / lp . tantanapp . com /
and play/?id=17.

[100] “TCPDUMP & LIBPCAP.” Version: 4.9.3. (2024), [Online]. Avail-
able: https://www.tcpdump.org/.

[101] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862, Sep. 2007. [Online]. Available: ht
tps://www.rfc-editor.org/info/rfc4862.

[102] M. Tileria, J. Blasco, and G. Suarez-Tangil, “WearFlow: Expanding
Information Flow Analysis To Companion Apps in Wear OS,” in
Proc. of the 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020.

[103] Twitter (X). “Roxana Nasoi: Okay for Bluetooth connectivity...”
Archived at https://archive.is/c5ZWb. (Sep. 26, 2021), [Online].
Available: https://twitter.com/roxananasoi/status/14422052476241
59233.

[104] Twitter (X). “Seth Rice: YES = It uses your WiFi...” Archived
at https://archive.is/svQvq. (Nov. 19, 2021), [Online]. Available:
https://twitter.com/DrumLordJr/status/1461590761187655685.

[105] Unity Forum. “TcpClient.Connect() on iOS 14 triggers local net-
work access permissions required.” Archived at https://archive.is/
Sd7u2. (Nov. 5, 2020), [Online]. Available: https://forum.unity.
com/threads/tcpclient-connect-on-ios-14-triggers-local-network-
access-permissions-required.1000701/.

[106] Y. Wang, X. Liu, W. Mao, and W. Wang, “DCDroid: Automated
Detection of SSL/TLS Certificate Verification Vulnerabilities in
Android Apps,” in Proc. of the Turing Celebration Conference
(TUR-C), 2019. DOI: 10.1145/3321408.3326665.

[107] D. Wu, D. Gao, R. Chang, E. He, E. Cheng, and R. Deng,
“Understanding Open Ports in Android Applications: Discovery,
Diagnosis, and Security Assessment,” in Proc. of the 26th Network
and Distributed System Security Symposium (NDSS), 2019. DOI:
10.14722/ndss.2019.23171.

[108] D. Yeke, M. Ibrahim, G. S. Tuncay, H. Farrukh, A. Imran, A.
Bianchi, and Z. B. Celik, “Wear’s my Data? Understanding the
Cross-Device Runtime Permission Model in Wearables,” in Proc.
of the 45th Symposium on Security & Privacy (S&P), 2024. DOI:
10.1109/SP54263.2024.00077.

[109] O. Zungur, A. Bianchi, G. Stringhini, and M. Egele, “AppJitsu:
Investigating the Resiliency of Android Applications,” in Proc. of
the 6th European Symposium on Security & Privacy (EuroS&P),
2021. DOI: 10.1109/EuroSP51992.2021.00038.

Appendix A.

A.1. iOS Permission Test (see Section 3)

We connected our phone to a 192.168.2.1/24 net-
work, and a VPN (10.1.0.1/24) for the IPv4 tests. For
IPv6 tests, we used a stateful fd00::1/24 network. For
each class from Table 1, we tested the addresses in Table 6.

TABLE 6: Tested IP addresses of our test app.

IPv4 IPv6

Local 192.168.2.1 (Router) fd00::1fa2 (Laptop)
192.168.2.100 (No device) fd00::fa (No device)

Local
outside

10.1.0.1 (VPN) fd01::1

10.10.10.10
192.168.1.1

Multicast 224.0.0.69 (Unassigned) ff02::1 (All nodes)
224.0.0.251 (mDNS) ff02::2 (All routers)
239.255.255.250 (SSDP) ff02::18d (Unassigned)

ff02::fb (mDNS)
ff05::c (SSDP)

Broadcast 192.168.2.255
255.255.255.255

A.2. App Categories (see Section 4)

We manually categorized the apps accessing the local
network instead of using the store categories to be more
precise, e.g., there exists no IoT category [57], [89]. In
Table 7, we provide the categories and the number of apps.

TABLE 7: Categories of apps that accessed the local net-
work. We summarized all categories with two or fewer apps
in Other. and ð show the number of apps that only
accessed it on one respective platform, and ∩ ð the
apps that accessed the local network on both platforms. The
numbers are in relation to the 199 apps that access it on at
least one platform.

Total ð ∩ ð

IoT 112 (56.28%) 25 (12.56%) 28 (14.07%) 59 (29.65%)
Video 17 (8.54%) 11 (5.53%) 1 (0.50%) 5 (2.51%)
Events 16 (8.04%) 16 (8.04%)
Audio 13 (6.53%) 7 (3.52%) 4 (2.01%) 2 (1.01%)
Games 12 (6.03%) 6 (3.02%) 5 (2.51%) 1 (0.50%)
Network 4 (2.01%) 1 (0.50%) 1 (0.50%) 2 (1.01%)
Fitness 3 (1.51%) 2 (1.01%) 1 (0.50%)
Organization 3 (1.51%) 3 (1.51%)
Shopping 3 (1.51%) 1 (0.50%) 2 (1.01%)
Other 16 (8.04%) 10 (5.03%) 5 (2.51%) 1 (0.50%)

https://doi.org/10.1145/3643991.3644896
https://doi.org/10.1145/3544548.3581060
https://doi.org/10.1145/2556288.2557400
https://archive.is/iNhVo
http://lp.tantanapp.com/and_play/?id=17
http://lp.tantanapp.com/and_play/?id=17
https://www.tcpdump.org/
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://archive.is/c5ZWb
https://twitter.com/roxananasoi/status/1442205247624159233
https://twitter.com/roxananasoi/status/1442205247624159233
https://archive.is/svQvq
https://twitter.com/DrumLordJr/status/1461590761187655685
https://archive.is/Sd7u2
https://archive.is/Sd7u2
https://forum.unity.com/threads/tcpclient-connect-on-ios-14-triggers-local-network-access-permissions-required.1000701/
https://forum.unity.com/threads/tcpclient-connect-on-ios-14-triggers-local-network-access-permissions-required.1000701/
https://forum.unity.com/threads/tcpclient-connect-on-ios-14-triggers-local-network-access-permissions-required.1000701/
https://doi.org/10.1145/3321408.3326665
https://doi.org/10.14722/ndss.2019.23171
https://doi.org/10.1109/SP54263.2024.00077
https://doi.org/10.1109/EuroSP51992.2021.00038

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper looks into the local network permission on
iOS from both a technical perspective as well as the user’s
perspective. To this end, the paper investigates under which
circumstances the permission is enforced, and makes a user
study about what end-users think this permission does.

B.2. Scientific Contributions

• Addresses a Long-Known Issue
• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) The authors found ways to bypass the permission
dialogue but still access the local network from the
app sandbox.

2) The authors made a large-scale study with 11k apps
and how they use the local network permission.

3) The authors made a user study.

B.4. Noteworthy Concerns

1) The network analysis only considers the first 30 sec-
onds of app usage and 25 automated interactions. It
might miss complex interactions, such as login, verifi-
cation, etc.

2) The paper mainly relies on publicly available documen-
tation of the protected resource for network access, but,
as acknowledged in Section 7, does not reverse engi-
neer iOS internals of the permission handling behind
that protected resource. Thus, there might be oversights
in potential bypasses.

3) As acknowledged in Section 7, the demographics of
the study are narrow.

	Introduction
	Background and Motivation
	Local Network
	Threat Model
	Permission Overview

	Permission Implementation
	Methodology
	Results
	Permission Bypass
	Insufficient Protection
	Local Network Rationales
	Responsilbe Disclosure

	Permission Prevalence
	Dataset
	Methodology
	Test Infrastructure
	Automatic App Interaction
	Rationales and Bonjour Strings

	Results
	Local Network Accesses
	Local Addresses Outside the Subnet

	Permission Rationales
	Methodology
	Results

	Users' Permission Comprehension
	Methodology
	Concepts Important for Understanding
	Misconceptions
	Survey Design
	Recruitment
	Data Analysis

	Results
	Overview of Participants
	Local Network Understanding
	Concepts
	Threats
	Misconceptions

	Limitation and Future Work
	Related Work
	Conclusion
	Appendix A
	iOS Permission Test (see chapter:rq1)
	App Categories (see chapter:rq2)

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

