
Exploring the Malicious Document Threat Landscape: Towards a Systematic
Approach to Detection and Analysis

Aakanksha Saha
TU Wien

Vienna, Austria
aakanksha.saha@seclab.wien

Jorge Blasco
Universidad Politécnica de Madrid

Madrid, Spain
jorge.blasco.alis@upm.es

Martina Lindorfer
TU Wien

Vienna, Austria
martina@seclab.wien

Abstract—Despite being the most common initial attack vec-
tor, document-based malware delivery remains understudied
compared to research on malicious executables. This limits
our understanding of how attackers leverage document file
formats and exploit their functionalities for malicious pur-
poses. In this paper, we perform a measurement study that
leverages existing tools and techniques to detect, extract, and
analyze malicious Office documents. We collect a substantial
dataset of 9,086 malicious samples and reveal a critical gap in
the understanding of how attackers utilize these documents.
Our in-depth analysis highlights emerging tactics used in
both targeted and large-scale cyberattacks while identifying
weaknesses in common document analysis methods. Through
a combination of analysis techniques, we gain crucial in-
sights valuable for forensic analysts to assess suspicious files,
pinpoint infection origins, and ultimately contribute to the
development of more robust detection models. We make our
dataset and source code available to the academic community
to foster further research in this area.

1. Introduction

Documents are a widely used method to deliver
malicious payloads during a cyberattack: In 2016, the
Microsoft Defender Security Research Team reported
that 98% of Office-targeted attacks utilized malicious
macros [43]. This dominance of macro-based threats was
further corroborated by a recent ReasonLabs cybersecurity
report, which identified them among the top 10 threats
detected in 2022 [30]. Moreover, Microsoft’s disclosure
of 59 vulnerabilities, including zero-day exploits, in Word
documents during 2023 highlights the criticality of ana-
lyzing these formats [22]. Despite the significant threat
posed by malicious documents, our understanding of these
threats remains limited [37], [48], [60].

Document macros are embedded sequences of com-
mands within a document, similar to the instruction sets
found in executable programs [44]. These macros can be
weaponized to download malware, exfiltrate sensitive data,
or exploit vulnerabilities in the processing software to
achieve unauthorized system access. Furthermore, attack-
ers often leverage social engineering tactics to manipulate
users into interacting with malicious documents contain-
ing clickable links or attachments, or deceptive prompts
encouraging users to enable macros [67].

Prior research has explored different approaches for
detecting malicious documents. Yan et al. proposed Dit-

Detector, which leverages bimodal machine learning mod-
els to combine visual and textual information for macro
malware detection [69]. Cohen et al. presented a Struc-
tural Feature Extraction Methodology (SFEM) specifically
targeted towards Office Open XML (OOXML) document
formats, employing machine learning for malicious docu-
ment identification [11]. A significant portion of document
analysis research focuses on extracting and analyzing
macro code. Extraction is typically achieved using tools
like oletools [34], followed by training detection models.
These are based on techniques like Latent Semantic In-
dexing (LSI) [48], Natural Language Processing (NLP) us-
ing Bag-of-Words and Term Frequency-Inverse Document
Frequency (TF-IDF) [47], or identification of specific
macro code keywords (e.g., AutoOpen and Shell) [29].
Beyond code analysis, recent work by Casino et al. ex-
plores the potential of detecting deceptive information
within documents by constructing lightweight signatures
from file components (e.g., “enable editing” and “enable
content”) for malware detection [8]. Ruaro et al. took a
more targeted approach, focusing on symbolic execution
for automated deobfuscation and analysis of Excel 4.0
macros (XL4) prevalent in Microsoft Excel files [60].

While existing research primarily focused on the bi-
nary classification of documents as either “malicious” or
“benign,” we argue that a comprehensive understanding of
the evolving landscape of malicious documents is required
for effective defense strategies. This is mainly because of
two key factors: (1) The diverse nature of file formats
(e.g., OLE and OOXML) and macro types (e.g., Visual
Basic for Applications (VBA) macros [44] and Excel
4.0 macros [53]) presents challenges for extracting file
metadata and macro code. This variety allows attackers
to develop new variants utilizing different formats, ef-
fectively evading signature-based detection [70]. (2) At-
tackers actively employ obfuscation techniques to evade
analysis and hinder the effectiveness of existing tools in
accurately analyzing these samples [50], [51]. As a result,
malware analysts are often limited by the capabilities of
available tools. When these tools encounter incompatible
file formats or obfuscated code, analysts resort to time-
consuming and resource-intensive manual analysis.

The aforementioned challenges highlight the need for
a deeper understanding of the malicious document ecosys-
tem. Building upon prior efforts in malicious content
detection we conduct a measurement study on a large
dataset of recent malware samples. This study focuses
on prevalent threats embedded within Microsoft Office

aakanksha.saha@seclab.wien
jorge.blasco.alis@upm.es
martina@seclab.wien


documents (Excel and Word) and Rich Text Format (RTF)
files to inform future research efforts in this domain. We
leverage state-of-the-art automated feature extraction tech-
niques specifically designed for document-based malware
analysis. Through a comprehensive evaluation, we assess
our capability to parse complex document file formats,
detect malicious indicators, and ultimately, identify gaps
in current automated document analysis approaches.

In summary, our main contributions are as follows:

• We collect a dataset of malicious documents cov-
ering the period from January 2020 to January
2024 and encompassing 9,086 samples across var-
ious file formats (.docx, .xlsx, .doc, .xls, and .rtf).

• We present a methodology for robust file type
identification, particularly crucial when dealing
with a diverse set of 10+ file formats. This method-
ology enhances the accuracy of malicious indica-
tor detection by ensuring proper file parsing.

• We identify the most prevalent document-based
threats and pinpoint limitations in current analysis
methods. We also provide valuable insights to
inform the future development of robust analysis
tools and defense mechanisms.

Artifacts. We believe that our findings will contribute
to the advancement of knowledge in the malicious
documents ecosystem by informing the development
of more robust analysis mechanisms. To foster fur-
ther research in this domain, we make our dataset
and source code available at https://github.com/SecPriv/
malwaredocumentanalysis.

2. Document File Types

Office File Format. Microsoft Office utilizes a variety of
file formats for documents, each with its own capabilities.
This variety can be seen within Excel file formats alone,
ranging from the older binary formats (.xls, .xlsb) to the
XML-based formats (.xlsx, .xlsm). Despite these differ-
ences, all Excel files share a core structure: a workbook
containing one or more spreadsheets.

Microsoft introduced the Office Open XML
(OOXML) format in 2006. This XML-based format,
standardized as ECMA-376 [16] and later adopted as
ISO/IEC 29500 [26] in 2016, has become the de facto
standard for representing documents, spreadsheets, and
presentations. OOXML leverages zip-compressed archives
to store data. These archives contain multiple files and
directories, with the Extensible Markup Language
(XML) used to describe the actual document content and
associated elements like images or stylesheets. OOXML
supports a wide range of features, from spreadsheet
formulas and form fields to integration with other XML
formats like SVG or MathML. Additionally, features
like digital signatures, document encryption, and macro
support (in various languages like Basic, JavaScript, and
Python) are possible within OOXML documents [49].

Prior to OOXML, Microsoft Office used legacy bi-
nary file formats, primarily the Compound File Binary
(CFB) format, also known as OLE (Object Linking and
Embedding), and the Compound Document File (CDF)
format. Introduced with Office 97, this format uses file

extensions like .doc (Word), .xls (Excel), and .ppt (Pow-
erPoint) [38]. Analogous to a traditional file system, OLE
files are composed of storage objects and streams. Storage
objects act as containers, potentially holding additional
storage objects or streams. Streams, on the other hand,
represent the actual data content, such as text, images, or
embedded objects within the file. Although legacy, they
remain available as an alternative document-saving option
for compatibility purposes.
Rich Text Format (RTF). Introduced by Microsoft in
the 1980s, RTF (.rtf) provides a method for encoding
formatted text and graphics for use across different appli-
cations. This format facilitates interoperability, enabling
document exchange between Microsoft products and var-
ious word-processing software. Consequently, RTF files
can be transferred between operating systems without
compromising document formatting [18]. The widespread
support of RTF by most word processors, text editors, and
document viewers allows for easy sharing and distribution.
Unlike the previously discussed formats, RTF files rely
on unformatted text, control words, groups, backslashes,
and delimiters for formatting. The control words, accord-
ing to RTF specification, begin with a backslash (e.g.,
\fonttbl), with parameters enclosed in curly braces
({...}). The braces can contain multiple control words
(forming a group), plain text, or even nested braces for
more complex formatting.

2.1. Document-based Threats

Attackers embed macro malware in documents, such
as Word, Excel and PowerPoint files, which can download
additional payloads from remote servers, extract malicious
code directly from the document, or steal data from
the victim’s machine. A targeted phishing campaign in
September 2023 exemplifies this threat [17]: APT34, a
suspected Iranian cyberespionage group, used a seem-
ingly legitimate document titled “MyCv.doc” to deploy the
Menorah.exe malware. This document contained hidden
macros that downloaded and dropped a .NET malware
executable. Phishing emails are a common method for
attackers to deliver these malicious documents [42]. How-
ever, with increased security awareness and Microsoft’s
default macro-disabling policies, attackers now resort to
deceptive social engineering techniques [67]. This in-
volves using misleading images or text within the doc-
ument to trick users into enabling editing or running
macros. The prevalence of document-based threats is fur-
ther substantiated by Botacin et al. [6], who observed
a significant increase in CDFs used in regionalized and
targeted malware attacks. Below we discuss the specifics
of macros and their utility in different file formats.
Macros. Macros, essentially embedded code within office
documents, can create custom functions that automate
specific actions when the document is opened. Visual
Basic for Applications (VBA) macros are code snippets
written in a variant of Visual Basic, specifically designed
for scripting within Microsoft Office applications like
Word, Excel, and PowerPoint [44]. Listing 1 shows an
example of a VBA macro that extracts malicious code
from the document’s properties, decodes it, and executes
it based on the victim’s operating system.

2

https://github.com/SecPriv/malwaredocumentanalysis
https://github.com/SecPriv/malwaredocumentanalysis


Listing 1. Example of a malicious VBA macro payload: The macro runs
automatically when the document is opened, extracts and decodes the
“Comments” property, writes the content to a temporary file and executes
it via the shell in a platform-specific subroutine for Windows or macOS.

Attribute VB_Name = "ThisDocument"
Attribute VB_Base = "1Normal.ThisDocument"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = True
Attribute VB_TemplateDerived = True
Attribute VB_Customizable = True

Sub AutoOpen()
On Error Resume Next
Dim found_value As String

For Each prop In ActiveDocument.BuiltInDocumentProperties
If prop.Name = "Comments" Then

found_value = Mid(prop.Value, 56)
orig_val = Base64Decode(found_value)
#If Mac Then

ExecuteForOSX(orig_val)
#Else

ExecuteForWindows(orig_val)
#End If
Exit For

End If
Next

End Sub

Sub ExecuteForWindows(decodedString As String)
Dim tempFilePath As String, fileNum As Integer
tempFilePath = Environ("TEMP") & "\tempfile.bat"
fileNum = FreeFile
Open tempFilePath For Output As #fileNum
Print #fileNum, decodedString
Close #fileNum

Shell "cmd.exe /c " & tempFilePath, vbHide

End Sub

Sub ExecuteForOSX(decodedString As String)
...

End Sub

VBA macros reside within a VBA project structure,
but their location depends on the document type and
file format. In Legacy Binary Formats (1997–2003) VBA
projects reside within an OLE storage named “Macros” at
the root of the OLE file for Word documents, while Excel
stores them in storage called “ VBA PROJECT CUR.”
PowerPoint integrates macros directly into the binary pre-
sentation structure, and not in a dedicated storage [32].

The introduction of OOXML formats (2007+), such
as .docx, .xlsx, and .pptx, changed how VBA macros are
handled. These formats cannot store macros directly by
default due to security considerations. Only specific files
with enabled macros, denoted by the ‘m’ at the exten-
sion end (e.g., .dotm, .docm, .xlsm, .pptm), can contain
them. When enabled, macros are stored in a separate
binary OLE file named “vbaProject.bin” within the zip
archive structure that forms the core of OOXML formats.
This file maintains the same VBA project structure as
legacy formats for consistency. However, the location of
“vbaProject.bin” within the zip archive varies depending
on the document type. For example, in Word documents,
it is located at “word/vbaProject.bin”, while in Excel
2007 and later it is found at “xl/vbaProject.bin”. Simi-
larly, PowerPoint stores it at “ppt/vbaProject.bin”. While
“vbaProject.bin” is the standard name for the VBA macro
storage file in OOXML formats, the standard itself allows
for some flexibility. Developers can use custom file names
for the macro storage, as long as the relationships are
correctly defined within the XML files.

Similar to OOXML files, RTF specifications do not
allow embedding VBA macros directly within an RTF
file [21], however, there is an exception. RTFs can embed

OLE objects with potentially malicious content. Specif-
ically, OLE “Package” objects can store any file type,
including executables and scripts. If a user double-clicks
such an embedded object, the system will launch the
file [31]. For instance, security researchers have docu-
mented cases where malicious actors included macro-
enabled Excel sheets within RTF documents and tricked
users into executing payloads [3].

The extraction and analysis of malicious content de-
pends on understanding the file formats and identifying
the embedded macro location. Olevba [32] can parse
Office file formats and supports both OLE and OpenXML,
detecting VBA macros and extracting their source code.
Similarly, extracting embedded objects from RTF files
requires parsing their nested control words. Tools like rt-
fobj from oletool [34] and RTFScan from OfficeMalScan-
ner [5], along with antivirus engines, rely on this parsing
capability to identify potential threats within RTF files.
Advanced Techniques. VBA macros have been a pop-
ular choice for malicious actors [44], but attackers
are constantly exploring advanced techniques like XL4
macros [53] and remote template injection vulnerabil-
ities [57], [58]. Microsoft Excel 4.0 introduced XL4
macros in 1992, a tool for automation through dedicated
macro worksheets. This concept differed significantly
from VBA macros, introduced one year later in Excel 5.0.
Unlike VBA macros, XL4 macros cannot reside within
regular worksheets. Instead, they are confined to specific
Excel 4.0 macro sheets, where each cell holds a single
formula defining the macro’s action. In newer file formats,
XL4 macros are stored in separate XML files [53]. These
macros are often hidden within apparently legitimate doc-
uments and under several layers of obfuscation making
them difficult to analyze [60].

Beyond hiding and obfuscating macros in documents,
attackers leverage other file formats to deliver malware.
RTF’s object-linking capabilities make it an attractive
target for attackers who exploit the format’s control words
for malicious purposes. By manipulating the \template
control word, attackers can reference a URL on a ma-
licious server instead of a legitimate template file. This
bypasses the intended functionality and directly retrieves
the malicious payload upon opening the file [57], [68].
Furthermore, RTF’s \object control words, with as-
sociated parameters and data, allow attackers to embed
executable files like PE, VBS, and JS directly within
the document [62], [70]. These embedded objects can
then download and execute code, effectively transforming
the RTF file into a downloader and launcher for ma-
licious content. Identifying such linked objects requires
examining the RTF document’s specific control words,
particularly \template and \object.

3. Automating Malicious Document Analysis

In this work, we analyze malicious documents used in
a wide range of attacks, from common threats (e.g., Qak-
bot and Emotet [10]) to targeted campaigns by nation-state
actors (e.g., Gamaredon and Lazarus [42]). We employ a
comprehensive approach that involves building an exten-
sive dataset and meticulously evaluating the effectiveness
of state-of-the-art methods in extracting malicious content
while identifying their limitations.

3



We automate the analysis of malicious documents by
using a combination of features extracted through static
analysis. This includes identifying macro functionalities,
extracting relevant textual information, and detecting ma-
licious techniques and code patterns using Yara signatures.
We focus on widely used binary file formats (.doc, .xls,
.ppt), OOXML formats (.docx, .xlsx, .pptx), and RTF
(.rtf) documents based on their ubiquity, the prevalence
of recent vulnerabilities discovered in them [12], and their
frequent utilization in targeted attacks [63].

3.1. Dataset

Understanding and mitigating the threats posed by ma-
licious documents requires analyzing a dataset of diverse
and representative samples. We achieve this by leveraging
VirusTotal academic API [2], allowing us to collect a
large dataset of malicious files focusing on specific file
types. Using VirusTotal has become a standard way and is
part of the best practices for doing malware research [9].
We start by identifying malicious documents submitted
to VirusTotal between January 2020 and January 2024
using the ‘tag: documents’ filter and focusing on files
classified as malicious by at least 20 antivirus engines.
This initial search yielded a vast dataset of 97,288 unique
files (identified by SHA256 hashes).

To create a more representative sample size, we im-
plemented a two-step process. We used Microsoft De-
fender’s Threat Labelling Engine to analyze file metadata,
where Microsoft Defender consistently provided the most
reliable labels, as confirmed by a previous study [60].
This helped us identify prominent malicious tags, threat
categories, and malware families. This analysis revealed
a significant presence of specific malware families, in-
cluding Emotet (49,119 files) and Laroux (8,002 files). To
avoid the overrepresentation of dominant malware families
like Emotet, we employed a random sampling approach.
We selected samples from the top 15 identified families,
ensuring a diverse representation within the final dataset.
Table 1 details the distribution of samples across these
families. By using random sampling we narrowed down
the initial dataset to 9,086 files on which we perform
our experiments. However, to facilitate further research
and benefit the community, we are releasing the complete
dataset consisting of 97,288 SHA256 hashes.

3.2. Malicious File Analysis

The exploration of the malicious document ecosystem
remains largely understudied. This is partly due to the
variety and complexity of Microsoft’s document formats,
characterized by intricate specifications [38]. Malware au-
thors leverage these complexities, crafting documents that
exploit vulnerabilities in static parsers while maintaining
compatibility with parsers within Office applications [62].

To understand the prevalence of different document
formats within our dataset, we employed a systematic
categorization based on each file’s Multipurpose Internet
Mail Extensions (MIME) type. A standardized identifier,
the MIME type specifies a file’s format and key character-
istics. Essentially, it acts as a digital fingerprint attached
to a file, conveying crucial information to systems about
its content. As discussed in Section 2, this information is

TABLE 1. MALICIOUS DOCUMENTS ACROSS THE TOP 15 FAMILIES.

Malware Family # of Samples Percentage

Emotet 1,335 14.69%
Thus 831 9.14%
Laroux 654 7.20%
Obfuse 431 4.74%
EncDoc 423 4.66%
Mailcab 284 3.12%
Donoff 240 2.64%
Sadoca 236 2.60%
Marker 199 2.19%
LionWolf 163 1.79%
Woreflint 120 1.32%
Madeba 104 1.14%
Hancitor 93 1.02%
Xaler 91 1.00%
Leonem 74 0.81%

Total Dataset 9,086 100%

useful for the proper handling, interpretation, and process-
ing of a file. Table 2 details the over 20 MIME types and
file formats identified in our dataset. A significant portion
of the files (about 87%) fall into Word or Excel formats,
including both OOXML and pre-OOXML versions.
Filetype Identification. Our analysis revealed limitations
in current approaches in identifying the correct file MIME
type. To investigate the prevalence of file misclassifi-
cation within our dataset, we employed three distinct
tools: Python-magic [24], ExifTool [23], and Magika [20].
Python-magic is a widely used library that leverages lib-
magic, the ubiquitous library behind the file command, to
identify file types using a predefined database of magic
numbers and header patterns. ExifTool, though primarily
focused on metadata extraction, can also identify file types
based on header information in various formats. Finally,
Magika, an open-source library developed by Google,
utilizes a deep learning model to perform file type iden-
tification, including complex or less common formats.

Table 2 shows significant discrepancies among the
three MIME identification tools used in our analysis.
Notably, Magika classified 521 files (5.73%) as “appli-
cation/ms.outlook” (indicating Microsoft Outlook mes-
sages), while libmagic assigned the generic category “ap-
plication/CDFv2” to all of them. “Application/CDFv2”
typically references Compound Document Format Ver-
sion 2, however, it serves as a container format and
lacks the granularity to differentiate between specific
document types like Word, Excel, or PowerPoint. Fur-
ther, libmagic assigned the “application/msword” label
to 264 files (8.38%), while Magika categorized them
as “application/vnd.ms-powerpoint”, “application/vnd.ms-
excel”, or even “application/x-msi” (Microsoft Installer)
for two files. Interestingly, Magika identified a consider-
ably higher number of MSI files (106, or 1.16%) compared
to ExifTool and libmagic, which only identified one. The
presence of these MSI files within the dataset warrants fur-
ther investigation as part of future work. Libmagic also ex-
hibited limitations in identifying RTF files, misclassifying
37 (14.74%) as “text/plain” or “text/octet-stream” (generic
binary data). ExifTool presented further inconsistencies.
It failed to identify the MIME type for 71 (0.78%) files
and assigned two unexpected types: “application/vnd.fpx”
(flashpix image) for 1,240 (13.67%) files and “Microsoft

4



TABLE 2. LIST OF MIME TYPES IDENTIFIED WITHIN OUR DATASET ALONG WITH THE NUMBER OF SAMPLES DETECTED FOR EACH MIME TYPE.

MIME Type File Type Magika Libmagic ExifTool

application/vnd.ms-excel Excel Spreadsheet 3,100 2,812 2,602
application/msword Word Document 2,884 3,148 2,937
application/vnd.openxmlformats-officedocument.wordprocessingml.document Word OOXML 1,156 1,076 1,630
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet Excel OOXML 841 779 137
application/vnd.ms-outlook Outlook Message 521 - -
text/rtf Rich Text Format 251 214 213
application/vnd.ms-powerpoint PowerPoint Presentation 188 9 6
application/x-msi Microsoft Installer 106 1 -
application/x-iso9660-image ISO 9660 CD-ROM 9 - -
text/plain Plain Text Document 6 12 13
application/vnd.openxmlformats-officedocument.presentationml.presentation PowerPoint OOXML 6 4 2
application/chm Windows HtmlHelp Data 4 - -
text/vbscript Visual Basic Source 3 - -
inode/x-empty Empty File 3 3 -
audio/mpeg mp3 Media File 3 - -
application/x-java-applet Java Archive Data (JAR) 3 7 -
application/zip ZIP Archive 1 52 8
application/x-bytecode.python Python Compiled Bytecode 1 - -
application/CDFv2 Compound Document Format Version 2 - 663 -
application/octet-stream Binary Data - 147 -
application/encrypted Encrypted Data - 100 -
application/x-hwp Hangul Word Processor Document - 66 -
image/vnd.fpx Media Type Flashpix - - 1,240
application/vnd.ms-word.template.macroEnabledTemplate Microsoft Word Macro-enabled Template - - 226
unknown N/A - - 71

TABLE 3. PAIRWISE AGREEMENT IN IDENTIFYING MIME TYPES.

Magika Libmagic ExifTool

Magika 1.000000 0.825336 0.698657
Libmagic 0.825336 1.000000 0.742681
ExifTool 0.698657 0.742681 1.000000

word macro-enabled template” for 226 (2.48%) files. This
analysis highlights the limitations of current approaches in
handling the diverse document formats.

To further assess the degree of inconsistency between
different approaches, we calculated the pairwise agree-
ment rates in identifying MIME types for the 9,086 sam-
ples within our dataset. Table 3 presents the computed
agreement rates between libmagic, ExifTool, and Magika.
As our results show, the agreement rates vary across tool
pairs. Magika and libmagic exhibit the highest agreement
of 82.53%. Conversely, the agreement between Magika
and ExifTool is the lowest at 69.86%. These discrepancies
suggest potential for malicious actors to disguise file
formats to evade detection and show the limitations of
current approaches in handling less common file formats.
Our Solution: Majority Voting. Effective extraction of
malicious content relies on accurate file type identifica-
tion. As established in Section 2, distinct file formats
possess unique structures and characteristics, and misiden-
tifying the file type can lead to errors and missed malicious
indicators. To overcome this challenge, we employ a
multi-step voting mechanism to ensure the most accu-
rate file type identification and increase the likelihood
of extracting malicious content. Initially, we strive for
a unanimous decision among libmagic, ExifTool, and
Magika. If all three agree, we adopt their consensus. In
the case of disagreement, a majority vote (two out of three
tools) determines the file type. However, when the tools
disagree or identify generic formats (e.g., CDF2), we use
Magika’s “best guess” indicator. This functionality utilizes

the deep learning model to provide its most likely type
based on previous encounters and confidence levels. To
demonstrate the efficiency of our approach, we ran our
malicious content extractor (described below) without the
file type detection. Our approach processed and extracted
indicators from 13.34% more files (99.80% vs. 86.46%).
This highlights the importance of using a multi-faceted ap-
proach for analyzing malicious documents, as dependence
on a single approach can introduce limitations.

3.3. Malicious Content Extraction

Prior research has explored various aspects of
document-based malware, including analyzing malicious
VBA macros [47], [48], or analyzing embedded images
and textual information within documents [69]. Addition-
ally, research efforts have addressed the challenge of com-
plex macro code by developing techniques for automated
extraction of Indicators of Compromise (IoCs) through
deobfuscation [28], [60]. Building upon prior research,
our content analysis pipeline utilizes oletools [34], a well-
established suite within the malware forensics community
for document parsing and macro extraction.

To understand the social engineering tactics embed-
ded within documents, we leverage the Python library
textract [41]. This library extracts text content from a
wide range of document formats. However, we encounter
extraction errors with certain file types, particularly newer
OOXML documents containing a large number of pages
and complex layouts. For these file types, we employ
a dedicated extraction pipeline using the python-docx
module [7], ensuring comprehensive text extraction.

Finally, we employ Yara, a rule-based tool that
matches text phrases, code snippets, and unique patterns
within a file to identify potential threats. We leverage a
curated set of Yara rules from reputable sources main-
tained by active developers, including Inquest Labs [25],
Florian Roth [59], and Ditekshen [14].

5



TABLE 4. FREQUENCY OF EXTRACTED FEATURES.

Stage of Feature Extraction Pipeline # of Samples

Processed Files 9,068 (99.80%)
Extracted Macros 6,944 (76.42%)
Extracted Text Content 3,414 (37.57%)
Yara Rules Triggered 8,934 (98.32%)

TABLE 5. FREQUENCY OF TRIGGERED YARA RULES.

Triggered Yara Rule [14], [25], [59] # of Samples

Office Document with VBA Project 7,860 (87.98%)
Microsoft Excel Hidden Macrosheet 3,234 (36.20%)
Windows API Function 2,932 (32.82%)
Microsoft Excel with Macrosheet 1,838 (20.57%)
Suspicious PowerShell WebDownload 679 (7.60%)
Powershell Command Fileless Malware 654 (7.32%)
SUSP Excel4Macro AutoOpen 490 (5.48%)
Base64 Encoded URL 368 (4.12%)
Office AutoOpen Macro 365 (4.09%)
PowerShell in Word Doc 343 (3.84%)

For streamlined analysis, we perform asynchronous
scanning of malicious documents. We use 7zip [1], a
widely used archive utility, to extract all storage and
streams from the OLE compound files and OOXML zip
containers. This process creates a folder and an individual
file for each successfully extracted storage and stream.
Subsequently, we apply the Yara rules to both the original
and extracted content. Our Yara analysis pipeline outputs
detailed information for each processed file, including the
number of extracted files, file matches, matched strings or
byte patterns, and the corresponding Yara rule.

Table 4 details the success rates for extracting various
features from our dataset of 9,086 files. We were able
to extract macro content from 6,944 samples (76.42%)
and textual information from 3,414 samples (37.57%).
Finally, 8,934 files (98.44%) triggered at least one Yara
detection rule. Moreover, Table 5 details the frequency of
the different Yara rules identified in our dataset. “Office
Documents with VBA Projects” are the most frequently
triggered rule (87.98%), followed by “Microsoft Excel
Hidden Macrosheets” detected in 36.20% of samples.

It is worth noting that our processing pipeline encoun-
tered errors during the analysis of 18 files (0.2%), resulting
in a processed file count of 9,068 files as shown in Table 4.
These errors stemmed from two main file types. First,
thirteen files were identified as Microsoft Word documents
with obfuscated tags in VirusTotal. This obfuscation might
render them unprocessable for further analysis. The five
other files were RTFs, which we identified to be associated
with the Royal Road Hacking Tool used by the Chinese
APT group APT29 (also known as Royal Road) [15].
This sophisticated malware exploits previously unknown
vulnerabilities to create corrupted RTF documents that
trick victims into executing malicious code. Notably, this
malware was used in a high-profile attack against the
Mongolian Ministry of Foreign Affairs, highlighting its
potential for significant disruption [15].

4. Malicious Document Characteristics

Macros. Our macro extraction pipeline was able to extract
macros from 6,944 samples (76.42%), meaning 2,124

Figure 1. Distribution of languages within the malicious documents.

0% 10% 20% 30% 40% 50%

Unknown

Chinese

Vietnamese

English

Korean

Ukrainian

Chinese Traditional

Dutch

Arabic

Spanish

Other

42.7%

18.1%

17.3%

13.7%

3.3%

1.1%

0.6%

0.6%

0.3%

0.3%

2.0%

files had no detectable macros. However, further analysis
revealed 708 files (33.33%), where our pipeline identified
the presence of macros but failed to extract the clear-
text macro code. Supporting this, Table 5 shows the Yara
rule for VBA projects in Office documents (macro-enabled
documents) triggered in 87.98% of the files analyzed. We
hypothesize that these unextracted macro codes could be
corrupted or heavily obfuscated, requiring manual analysis
or advanced techniques for extraction. Another possibility
is that they might be embedded unconventionally and
located within non-standard parts of the document.

To further analyze the threats within macro-enabled
documents we investigate the combination of triggered
Yara rules. The most prevalent and insightful combination
is documents flagged as “Office Document with VBA
Project” appearing alongside “Microsoft Excel Hidden
Macrosheet” (374 occurrences). This suggests the uti-
lization of hidden macrosheets within Excel documents
(described in Section 4.1), likely to bypass detection.
Another common combination occurring in 344 samples
is “Microsoft Excel with Macrosheet” with “Office Doc-
ument with VBA Project,” highlighting the general risk
associated with Excel macrosheets. Finally, we observed
another common Yara combination of “Office Document
with VBA Project” with PowerShell commands and file-
less malware (e.g., “Powershell Command Fileless Mal-
ware”). This suggests the sophisticated use of macro-
enabled documents as a delivery mechanism for fileless
malware attacks. We further investigated the signature
associated with this technique and identified the use of
several embedded Windows API calls. PowerShell, a
scripting language, can utilize Windows API functional-
ities to perform a variety of malicious actions, such as
downloading additional malware, manipulating files, or
executing commands.

Deceptive Text. We further investigate the textual con-
tent of socially engineered documents within our dataset
by analyzing the language distribution. Figure 1 shows
the frequency of the most common languages, such as
Chinese, Vietnamese, and English, likely reflecting inter-
national campaigns. Interestingly, a significant portion of
documents fell into the ‘unknown’ category for two key
reasons. First, some documents triggered low-confidence
language accuracy, requiring further analysis. Second,
a manual examination of a sample set revealed docu-
ments containing scripts or macro commands embedded
within the textual content. Additionally, examining the

6



relationship between text and macros, we found that 1,468
(42.97%) of the 3,414 files containing text lacked any
evidence of macro code, suggesting not all malicious doc-
uments with textual content rely on macros for malicious
behavior. However, the majority (70.98%) of these macro-
less files were Excel documents, where further analysis
revealed the presence of XL4 macros embedded within the
cell content of the spreadsheets (discussed in Section 4.1).

No Indicators. We identified 46 DOCX, 30 XLSX, and
12 OneNote documents with no immediate malicious in-
dicators such as macros or text content. OneNote files
(.one) present a unique challenge for analysis. While they
represent the native format for Microsoft OneNote, a
digital note-taking application, current parsing tools strug-
gle to handle them effectively and Magika misclassified
nine OneNote files as ISOs and three as MP3s. This is
particularly concerning as recent research by Proofpoint
indicates the TA577 cybercrime group is increasingly us-
ing OneNote documents for malware delivery, potentially
paving the way for similar tactics by others [40]. This
group has also been linked with high confidence to a
March 2021 Sodinokibi ransomware attack that initially
compromised victims via malicious Microsoft Office at-
tachments containing macros that downloaded and exe-
cuted IcedID malware [35]. While parsing OneNote docu-
ments presented challenges, we further identified 28 out of
30 XLSX files that lacked any malicious indicators to be
linked with the Bluenoroff cryptocurrency campaign asso-
ciated with North Korean threat actors [55]. By comparing
the file hashes to those identified in public reports, we
discovered a repetitive exploitation pattern in these XLSX
files. All of them relied on the well-known CVE-2017-
0199. The exploit involves fetching malicious content
from a URL embedded in the document’s metadata and
then downloading a remote macro-enabled template for
further execution. We discuss this technique in detail in
Section 4.2. These findings suggest both the prevalence of
Excel files as a delivery method in cyberattacks and the
use of unconventional exploitation techniques involving
Excel and OneNote files by more advanced attackers.

4.1. Evasion Techniques

When delving deeper into the challenges associated
with extracting and analyzing malicious content we fo-
cus on Excel files: Microsoft Excel allows hiding sheets
within a workbook, although one sheet must remain vis-
ible [45]. While hidden sheets can be unhidden through
the interface or file manipulation, another state marked as
“very hidden” requires hexadecimal editing [45]. Malware
authors exploit this feature to embed malicious macros in
hidden sheets, making them harder to detect (e.g., XL4
macros) [50], [51]. While both VBA and XL4 macros
(discussed in Section 2) can be exploited maliciously, XL4
macros introduce unique complexities for analysis due to
their intricate structure and dispersed execution logic [27].

In our dataset, we identify 300 occurrences of “Mi-
crosoft Excel Hidden Macrosheet” and “Microsoft Excel
with Macrosheet,” 270 occurrences of “Microsoft Excel
Hidden Macrosheet,” “Microsoft Excel with Macrosheet”
and, “SUSP Excel4Macro AutoOpen” Yara rule combina-
tions. Both entries highlight the prevalence of malicious

macros hidden within Excel documents. The presence of
the “SUSP Excel4Macro AutoOpen” rule in the second
entry suggests an additional layer of concern. These doc-
uments not only contain hidden macros but also have
macros specifically designed to run automatically upon
opening the file. This increases the risk of immediate ex-
ecution of malicious code if the user opens the document.

We further identified 708 files where our extraction
pipeline detected the presence of macros but failed to
extract the clear-text macro code. Interestingly, of the
708 unextracted macros, 625 (88.27%) originated from
Excel files containing XL4 macros. This highlights the
versatility of XL4 macros and the challenges in extracting
the macro code for malicious content analysis. In response
to these challenges, Ruaro et al. [60] designed Symbexcel,
a symbolic execution engine specifically for analyzing and
deobfuscating XL4 macros in Excel 4.0. This technique
aims to infer the “correct” values of any environment
variables, leading to the deobfuscation of the malicious
payload hidden within the macro.

We used Symbexcel to analyze 625 Excel files identi-
fied as containing XL4 macros. Symbexcel successfully
extracted IoCs from the macro logic within 458 files
(73.28%). However, it encountered limitations in process-
ing of 154 files. One of the primary limitations is the
lack of complete grammar that more accurately describes
the Excel 4.0 Grammar. In several parsing scenarios,
the grammar parser failed to evaluate formulas, such as
ShrFmla due to them deviating from their expected
behavior. Additionally, certain non-standard function calls
like _xlfn.CONCAT instead of CONCAT() also con-
tributed to parsing errors. Parsing XL4 formulas correctly
is crucial for analyzing these malicious documents. While
it might initially appear straightforward, the syntactical
features of Excel formulas are quite complex. These find-
ings suggest the need for a more precise formula grammar,
ideally one that completely matches the one implemented
in Excel, to effectively handle complex Excel 4.0 malware.

4.2. Other Advanced Techniques

RTF exploits. Rich Text Format (RTF) files offer great
versatility in document formatting but present significant
challenges for robust security analysis. RTF heavily re-
lies on control words to define document presentation
(see Section 2). These control words, along with their
associated parameters and data, can introduce vulnera-
bilities when parsing errors occur [62]. Attackers exploit
these errors to embed malicious resources within the RTF
file. Historical vulnerabilities such as CVE-2010-3333
and CVE-2014-1761 demonstrate the potential dangers of
flawed RTF parsing implementations [70].

Our analysis confirmed the complexities involved in
detecting threats within RTF documents. Apart from the
ability of five malicious RTF files to evade parsing al-
together (see Section 3.3), we were unable to extract
malicious indicators within a substantial portion (60.55%)
of the RTF files. For these files, we encountered “mal-
formed OLE object” errors during analysis. These errors
prevented the extraction of OLE objects, which could
potentially contain hidden malicious content.

Our analysis also identified a subset of RTF files
(4.71%) that caused errors due to malformed headers.

7



According to Microsoft’s specifications, a valid RTF doc-
ument should begin with {rtf1} (RTF version 1.x).
However, manual inspection revealed deviations in these
files, where the header started with {rt0} or simply
{rt}. While Microsoft Word can handle these variations,
many analysis tools misinterpret them as plain text and
fail to process them as RTF documents. Interestingly,
all the files with malformed headers were linked to a
Remcos RAT (Remote Access Trojan) malware campaign.
Remcos, also known as Remote Control and Surveillance
Software, is a sophisticated tool that grants attackers full
control over compromised machines. In this campaign, the
attackers used an RTF document with a malformed header
and an Equation object to spread a variant of Remcos [71].

Despite these limitations, our Yara rule-based detec-
tion provided valuable insights. We identified 24 unique
rules triggered across 256 RTF files. Table 6 details the
broad classification of these rules and the corresponding
number of detections for each category. The most preva-
lent threat among the RTF files is exploitation through
specific CVEs, particularly CVE-2017-1182, CVE-2017-
8759, and CVE-2018-0802 [12]. CVE-2017-1182 exploits
a buffer overflow vulnerability within the Microsoft Equa-
tion Editor allowing attackers to execute malicious code
on opening a specially crafted RTF document. CVE-2017-
8759 targets a SOAP WSDL parser code injection vulner-
ability within Microsoft Office RTF documents allowing
attackers to inject arbitrary code during parsing. Finally,
CVE-2018-0802 represents a more general memory cor-
ruption vulnerability within Microsoft Office applications.

Beyond the exploitation of known vulnerabilities, our
analysis revealed two additional frequently occurring in-
dicators. The first involved a combination of embedded
malicious objects within the RTF files and deviations
from the standard RTF specifications. The second indi-
cator focused on anti-analysis techniques through RTF
header manipulation, header obfuscation, and embedding
obfuscated OLE object headers.

External Relations and Template Injection. Standard
detection tools often focus on malicious code embedded
directly within documents. However, Microsoft Office al-
lows documents to reference various resources, includ-
ing external or remote templates. Attackers exploit this
functionality by modifying the document’s properties and
utilizing external relations. These modifications point the
document to a malicious template hosted on a remote
server, such as a URL or a GitHub repository. Once the
compromised document is opened, the malicious code
from the external template is loaded and executed. Recent
threat reports detail the external relations exploit where
attackers crafted DOCX files to trigger macro execution
from a remote .dotm template [19], [58]. To assess the
prevalence of this technique within our dataset, we exam-
ined document relationships within the .rels folder, par-
ticularly the settings.xml.rels file. We identified
224 (2.47%) samples exhibiting signs of utilizing exter-
nal relations to potentially download remote malicious
content. Furthermore, Yara rules successfully flagged a
majority of these samples, triggering indicators like “OLE
RemoteTemplate” or “XML WebRelFrame RemoteTem-
plate.” However, three files (less than 1.5%) bypassed
detection. These outliers included two XLSX files using

TABLE 6. CLASSIFICATION OF THREATS AMONG RTF DOCUMENTS.

Threat Category Count

Exploitation of CVEs (2017-1182, 2017-8759, 2018-0802) 264
Malicious Embedded Objects 253
RTF Header Manipulation 166
RoyalRoad Exploits 25

hyperlinks to malicious URLs and one PPTX file con-
taining a link to a malicious OLE object. Notably, all
three files had text content, suggesting a potential blend of
social engineering and malicious links. Interestingly, these
three samples were linked to targeted APT attacks, with
one associated with a Chinese group known for targeting
the Tibetan community [56].

While remote template injection poses a significant
threat within OOXML formats, attackers have also ex-
ploited similar vulnerabilities in RTF documents. A recent
report by Proofpoint details a technique known as RTF
template injection [57]. RTF files store formatting instruc-
tions as plain text, and attackers manipulate the template
property to redirect the file to execute a malicious script.
Proofpoint observed a rise in this technique, primarily
employed by APT groups linked to India and China. The
simplicity and effectiveness of RTF template injection
suggest its potential for wider adoption by various cyber
criminals. The trickle-down effect in cyberattacks further
amplifies this concern [61]. As seen with the Royal Road
tool, initially used by APT groups, the techniques become
more widespread over time [15].
Dynamic Data Exchange (DDE). DDE is a protocol
originally designed for data sharing between Microsoft
Office applications. DDE was partially superseded by
Object Linking and Embedding (OLE) and is currently
maintained in Windows systems for backward compati-
bility [66]. However, attackers exploit DDE to execute
malicious commands, including downloading additional
payloads. This technique works in both OLE and OOXML
file formats. While newer Office versions alert users about
DDE commands within documents, attackers have adapted
their phishing tactics to bypass these warnings. This
method is commonly used by threat actors like APT28 and
FIN7 [54]. One method of bypassing warnings involves
manipulating the DDE syntax to craft obfuscated prompts.
Attackers can achieve this by directly invoking PowerShell
through modified parameters, resulting in prompts that
appear less suspicious to users. This technique increases
the likelihood of user interaction and subsequent compro-
mise [13]. Basic DDE detection can be achieved through
string scanning, which involves manually searching the
text content of a file for keywords like DDEAUTO or
DDE, although it can be time-consuming and can miss
obfuscated instances. Another approach is using Yara
rules to identify keywords and specific features associated
with DDE exploitation. Our malicious content extraction
pipeline, combining Yara and msodde [33] from oletools,
detected 240 (2.64%) files using DDE techniques.

5. Threats to Validity

Our study offers valuable insights into the use of
malicious documents, however, we acknowledge limita-
tions in the dataset that might affect the generalizability

8



of our findings. Our focus on malware delivered solely
via malicious Office documents detected by VirusTotal
introduces a potential bias. Limiting the scope to a specific
attack vector excludes other methods employed by attack-
ers, such as drive-by downloads, malicious PDFs, and
weaponized email messages. This limitation restricts our
understanding of the complete threat landscape. Moreover,
VirusTotal relies on various antivirus engines and threat
intelligence feeds to identify malware. While a valuable
source, some malicious samples might evade detection
by some engines, leading to the underrepresentation of
certain types of malware in the dataset. This can skew
the results towards malware types that are more easily
identified by VirusTotal.

Despite these limitations, our findings can still be
considered a valuable lower bound for the overall threat
landscape. The high prevalence of malicious documents
within our dataset suggests its significance as an attack
vector. Furthermore, our insights can inform the develop-
ment of mitigation strategies specifically for document-
based threats.

6. Recommendations and Future Directions

Automating malicious document analysis remains crit-
ical for both post-mortem incident response and proactive
threat prevention. In post-mortem analysis, understanding
malicious actions performed is essential, while identifying
IoCs helps track future attacks. However, current solutions
face several limitations:

File Identification. Analyzing malicious Microsoft Office
files is challenging due to the complexity and variety of
file formats, each with its own potential for exploitation.
Unfortunately, current methods often misidentify files,
especially those that are incompatible or deliberately dis-
guised. This leads to missed threat indicators and ne-
cessitates time-consuming manual analysis. However, our
findings in Section 3.2 demonstrate that using a com-
bination of multiple tools can substantially improve the
identification process and reduce processing errors.

Macros and Obfuscation. Macro malware in documents
continues to remain a prevalent threat, as detailed in Sec-
tion 4, where 76.42% files in our dataset contained macros
and the majority of them are Excel and Word documents.
However, Excel files pose the most significant challenge.
Their layered evasion and obfuscation techniques make
content analysis difficult. Existing methodologies often
struggle with heavily obfuscated macro code and incom-
plete grammar, as discussed in Section 4.1. To effectively
combat complex Excel 4.0 malware, developing a compre-
hensive Excel 4.0 formula grammar and parser is essential.
Here, Large Language Models (LLMs) offer a promising
solution. LLMs trained on large datasets of real-world
Excel formulas, encompassing both standard and non-
standard functions, could potentially learn to recognize
and interpret functions beyond those explicitly defined in
the current grammar. Furthermore, as Excel evolves with
new features and functions, the LLM’s ability to learn
continuously from new data would enable it to adapt and
handle these changes automatically, reducing the need for
constant grammar updates.

Unconventional Attack Vectors. RTF files have become
a prominent attack vector. These techniques include em-
bedding malicious resources directly within the document,
exploiting remote template injection vulnerabilities, or
leveraging parsing errors. As shown in Section 4.2, current
static analysis approaches fail to extract indicators from a
substantial portion of 60.55% files. Notably, in our anal-
ysis, we identified instances of sophisticated APT actors
successfully using RTFs as attack vectors. Furthermore,
OneNote file formats present additional parsing chal-
lenges. While Yara rules, with their predefined patterns
and known threat signatures, offer some defense against
known threats, they struggle with entirely novel or obfus-
cated malware. This creates a reactive approach, hindering
our ability to proactively understand the evolving threat
landscape and adapt to new file types and attack methods.
The development of advanced static analysis tools that can
effectively detect malicious document structures, reliably
handle different file formats (RTFs, OneNote), and extract
embedded malicious content, would be a step towards
proactively aiding in threat detection and analysis.
Future Directions. As an immediate improvement to the
current static analysis methods we aim to enhance RTF
file analysis techniques by focusing on two key areas:
(1) identification and extraction of control words com-
monly used for embedding or obfuscating objects (e.g.,
\objdata, \objemb, \template), and (2) anomaly
detection through analysis of control word order, combi-
nations, and nesting patterns within the RTF structure to
pinpoint unusual behavior. Additionally, we will investi-
gate embedded OLE objects within identified control word
groups, searching for non-standard characters and byte
sequences that might indicate the presence of potentially
malicious code or obfuscation. We further plan to inves-
tigate the social engineering tactics employed within the
documents. Here, our initial focus is on incorporating an
image extraction component to capture deceptive images.
We will leverage OCR tools capable of processing images
across various document formats, to effectively analyze
the content of embedded images. Furthermore, we plan
to explore the translation of non-English content to En-
glish for a more comprehensive analysis of the types and
variations of prompts used to lure users into opening or
clicking on malicious documents. Finally, we will explore
methods for identifying, parsing, and extracting critical
file metadata and potentially malicious content from Mi-
crosoft OneNote documents.

7. Related Work

Malware analysis and automated malware detection
techniques have long been a well-established field. While
significant research has focused on executable files, ma-
licious document files remain a relatively understudied
area. Within the document space, extensive research exists
on malicious PDF detection [36], [39], [64], [65], [72].
However, these approaches often rely on format-specific
features and do not generalize to other file formats like
Microsoft Office documents due to structural differences.

Several studies have explored document analysis
through file structure examination. Otsubo et al. [52]
investigated deviations from standard file formats in doc-
uments containing executables. Cohen et al. [11] extended

9



this concept to XML-based Office documents, employing
machine learning on extracted structural features for ma-
licious document detection.

Other studies have explored VBA macro analysis for
malicious document detection. Bearden et al. [4] classified
macros using K-Nearest Neighbors on features extracted
from p-code opcodes (translated VBA code) with TF-IDF
weighting. Mimura et al. [46], [48] investigated raw VBA
code with Doc2vec models and LSI for malicious macro
detection. Kim et al. [28] proposed a machine learning
approach for detecting obfuscated VBA macros, categoriz-
ing obfuscation techniques based on prior research. More
recently, Casino et al. [8] proposed perceptual hashing of
document images by extracting key document components
for lightweight signature creation. Yan et al. proposed
DitDetector [69], a bimodal learning approach using vi-
sual and textual information from document previews for
macro malware detection.

In a more targeted line of research, Ruaro et al. [60]
proposed Symbexcel, a symbolic execution approach for
automated deobfuscation and analysis of Excel 4.0 macros
(XL4), a growing attack vector within documents. Com-
plementing this line of research, Blonde et al. [37] per-
formed a measurement study on targeted attack documents
of 3,815 samples identifies attacker focus. The authors
identified several attacks targeting specific regions and
ethnicities, highlighting the trend of socially engineered
malware. They also found a focus on exploiting known
vulnerabilities, indicating attackers prioritize readily avail-
able attack vectors.

Extending on prior research, we conducted a mea-
surement study of malicious document samples from the
past four years (2020-2023). We focused on Microsoft
document formats to identify both the common techniques
employed by attackers and the limitations of existing
approaches in detecting these threats.

8. Conclusion

Non-binary files, particularly Microsoft Office doc-
uments, are a prevalent initial infection vector. The
widespread use of Office suites, coupled with their in-
herent complexity and persistent vulnerabilities, creates
a prime target for attackers. Thus, understanding these
malicious vectors is as crucial as analyzing executables.
Our analysis revealed significant limitations in current
document analysis approaches. In 17.47% of the analyzed
files, the malicious file type could not be definitively
identified, leading to a 13.34% error rate in processing. We
attribute this primarily to the obfuscated file formats and
the inability of toolchains to handle emerging file types.
Furthermore, current approaches struggle to extract mali-
cious content from obfuscated Excel macros (24.64%) and
reliably parse and extract malicious indicators from RTF
file formats (60.55%). These issues suggest that malicious
documents remain a prominent attack vector. Achieving a
level of maturity in document analysis comparable to exe-
cutable file analysis necessitates robust frameworks for the
automated processing of diverse file formats. Parsing tools
capable of handling a wider range of formats and reliably
extracting malicious components for forensic analysis are
essential. With this study, we aim to inform and guide fur-
ther research efforts in the malicious document ecosystem.

Acknowledgements

We thank the anonymous reviewers for their valuable
insights for improving the paper. We would also like
to thank Godwin Attigah for their assistance with data
collection, Alyssa Scheer for their help with the analysis
of language detection in text data, and Alexander Lazarev
for their contributions in the initial phases of the project.

This material is based on research supported by the
SecInt Doctoral College at TU Wien and SBA Research
(SBA-K1), a COMET Center within the COMET – Com-
petence Centers for Excellent Technologies Programme
and funded by BMK, BMAW, and the federal state of
Vienna. The COMET Programme is managed by FFG.
This work has also been partially supported by the Re-
covery, Transformation, and Resilience Plan funded by
the European Union (Next Generation).

References

[1] 7-Zip. https://www.7-zip.org/, 2024.

[2] VirusTotal. https://www.virustotal.com/, 2024.

[3] Ionut Arghire. Malicious RTF Persistently Asks Users to Enable
Macros. https://web.archive.org/web/20240516132100/https://
www.securityweek.com/malicious-rtf-persistently-asks-users-
enable-macros/, 2018.

[4] Ruth Bearden and Dan Chai-Tien Lo. Automated Microsoft Office
Macro Malware Detection Using Machine Learning. In Proc. of
the IEEE International Conference on Big Data (Big Data), 2017.

[5] Frank Boldewin. OfficeMalScanner. https://github.com/fboldewi
n/reconstructer.org, 2019.

[6] Marcus Botacin, Hojjat Aghakhani, Stefano Ortolani, Christopher
Kruegel, Giovanni Vigna, Daniela Oliveira, Paulo Lı́cio De Geus,
and André Grégio. One Size Does Not Fit All: A Longitudinal
Analysis of Brazilian Financial Malware. ACM Transactions on
Privacy and Security (TOPS), 2021.

[7] Steve Canny. python-docx (v1.1.0). https://pypi.org/project/
python-docx/, 2023.

[8] Fran Casino, Nikolaos Totosis, Theodoros Apostolopoulos, Niko-
laos Lykousas, and Constantinos Patsakis. Analysis and Correlation
of Visual Evidence in Campaigns of Malicious Office Documents.
Digital Threats: Research and Practice (DTRAP), 2023.

[9] Fabrı́cio Ceschin, Marcus Botacin, Albert Bifet, Bernhard
Pfahringer, Luiz S. Oliveira, Heitor Murilo Gomes, and André
Grégio. Machine Learning (In) Security: A Stream of Problems.
Digital Threats: Research and Practice (DTRAP), 2024.

[10] CISA. Emotet Malware. https://www.cisa.gov/news-events/cyber
security-advisories/aa20-280a, 2020.

[11] Aviad Cohen, Nir Nissim, Lior Rokach, and Yuval Elovici. SFEM:
Structural Feature Extraction Methodology for the Detection of
Malicious Office Documents Using Machine Learning Methods.
Expert Systems with Applications, 2016.

[12] CVEdetails. Microsoft Word Security Vulnerabilities. https://
www.cvedetails.com/vulnerability-list/vendor id-26/product id-
529/Microsoft-Word.html, 2024.

[13] Mike Czumak. Abusing Microsoft Office DDE. https://web.archi
ve.org/web/20240515161640/https://www.securitysift.com/abusi
ng-microsoft-office-dde/, 2017.

[14] Ditekshen. Detection Yara. https://github.com/ditekshen/detection/
tree/master/yara, 2024.

[15] Docguard. Royal Road Is Still in Use! https://web.archive.org/
web/20240515155837/https://www.docguard.io/royal-road-malwar
e-rtf/, 2023.

[16] ECMA. ECMA-376 – Office Open XML File Formats. https://
ecma-international.org/publications-and-standards/standards/
ecma-376/, 2021.

10

https://www.7-zip.org/
https://www.virustotal.com/
https://web.archive.org/web/20240516132100/https://www.securityweek.com/malicious-rtf-persistently-asks-users-enable-macros/
https://web.archive.org/web/20240516132100/https://www.securityweek.com/malicious-rtf-persistently-asks-users-enable-macros/
https://web.archive.org/web/20240516132100/https://www.securityweek.com/malicious-rtf-persistently-asks-users-enable-macros/
https://github.com/fboldewin/reconstructer.org
https://github.com/fboldewin/reconstructer.org
https://pypi.org/project/python-docx/
https://pypi.org/project/python-docx/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-280a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-280a
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-529/Microsoft-Word.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-529/Microsoft-Word.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-529/Microsoft-Word.html
https://web.archive.org/web/20240515161640/https://www.securitysift.com/abusing-microsoft-office-dde/
https://web.archive.org/web/20240515161640/https://www.securitysift.com/abusing-microsoft-office-dde/
https://web.archive.org/web/20240515161640/https://www.securitysift.com/abusing-microsoft-office-dde/
https://github.com/ditekshen/detection/tree/master/yara
https://github.com/ditekshen/detection/tree/master/yara
https://web.archive.org/web/20240515155837/https://www.docguard.io/royal-road-malware-rtf/
https://web.archive.org/web/20240515155837/https://www.docguard.io/royal-road-malware-rtf/
https://web.archive.org/web/20240515155837/https://www.docguard.io/royal-road-malware-rtf/
https://ecma-international.org/publications-and-standards/standards/ecma-376/
https://ecma-international.org/publications-and-standards/standards/ecma-376/
https://ecma-international.org/publications-and-standards/standards/ecma-376/


[17] Mohamed Fahmy and Mahmoud Zohdy. APT 34 Deploys
Phishing Attack With New Malware. https://web.archive.org/
web/20240517103343/https://www.trendmicro.com/en us/resear
ch/23/i/apt34-deploys-phishing-attack-with-new-malware.html,
2023.

[18] File Format Guide. Word Processing File Formats - RTF. https://
docs.fileformat.com/word-processing/rtf/, 2023.

[19] Nicole Fishbein. How to Analyze Malicious Microsoft Of-
fice Files. https://intezer.com/blog/malware-analysis/analyze-mali
cious-microsoft-office-files/, 2023.

[20] Yanick Fratantonio, Elie Bursztein, Luca Invernizzi, Marina Zhang,
Giancarlo Metitieri, Thomas Kurt, Francois Galilee, Alexandre
Petit-Bianco, and Ange Albertini. Magika Content-type Scanner.
https://github.com/google/magika, 2023.

[21] Lenovo Glossary. RTF Files. https://web.archive.org/web/
20240516081339/https://www.lenovo.com/us/en/glossary/rtf/,
2024.

[22] Jonathan Greig. CISA Warns of Attacks Using Microsoft Word,
Adobe Bugs. https://web.archive.org/web/20240519175623/https://
therecord.media/microsoft-adobe-bugs-cisa-kev-list, 2023.

[23] Phil Harvey. Exiftool (v12.4). https://exiftool.org/, 2022.

[24] Adam Hupp. python-magic (v0.4.27). https://pypi.org/project/
python-magic/, 2022.

[25] InQuest. yara-rules-vt. https://github.com/InQuest/yara-rules-vt,
2024.

[26] ISO. ISO/IEC 29500-1:2016 - Office Open XML File Formats.
https://www.iso.org/standard/71691.html, 2016.

[27] Jamie. zloader and XLM 4.0: Making Evasion Great Again.
https://web.archive.org/web/20240515190020/https://clickallthethi
ngs.wordpress.com/2020/05/13/zloader-and-xlm-4-0-making-
evasion-great-again/, 2020.

[28] Sangwoo Kim, Seokmyung Hong, Jaesang Oh, and Heejo Lee.
Obfuscated VBA Macro Detection Using Machine Learning. In
Proc. of the 48th International Conference on Dependable Systems
and Networks (DSN), 2018.

[29] Vasilios Koutsokostas, Nikolaos Lykousas, Theodoros Apos-
tolopoulos, Gabriele Orazi, Amrita Ghosal, Fran Casino, Mauro
Conti, and Constantinos Patsakis. Invoice# 31415 Attached: Au-
tomated Analysis of Malicious Microsoft Office Document. Com-
puters & Security, 2022.

[30] Reason Labs. A Consumer Cybersecurity Trends Re-
port. https://reasonlabs.com/research/consumer-cybersecurity-tr
ends-report-2023, 2023.

[31] Philippe Lagadec. Anti-Analysis Tricks in Weaponized RTF. http://
decalage.info/rtf tricks, 2016.

[32] Philippe Lagadec. Tools to Extract VBA Macro Source Code from
MS Office Documents. https://www.decalage.info/en/vba tools,
2017.

[33] Philippe Lagadec. msodde. https://github.com/decalage2/oletools/
blob/master/oletools/msodde.py, 2019.

[34] Philippe Lagadec. oletools (v0.60.1). https://github.com/decalage2/
oletools, 2022.

[35] Selena Larson, Daniel Blackford, and Garrett G. The First Step:
Initial Access Leads to Ransomware. https://www.proofpoint.com/
us/blog/threat-insight/first-step-initial-access-leads-ransomware,
2021.

[36] Pavel Laskov and Nedim Šrndić. Static Detection of Malicious
JavaScript-bearing PDF Documents. In Proc. of the 27th Annual
Computer Security Applications Conference (ACSAC), 2011.

[37] Stevens Le Blond, Cédric Gilbert, Utkarsh Upadhyay, Manuel
Gomez-Rodriguez, and David R. Choffnes. A Broad View of the
Ecosystem of Socially Engineered Exploit Documents. In Proc.
of the Network & Distributed System Security Symposium (NDSS),
2017.

[38] Library of Congress. Microsoft Office Word 97-2003 Binary File
Format (.doc). https://www.loc.gov/preservation/digital/formats/
fdd/fdd000509.shtml, 2023.

[39] Daiping Liu, Haining Wang, and Angelos Stavrou. Detecting
Malicious Javascript in PDF through Document Instrumentation. In
Proc. of the 44th International Conference on Dependable Systems
and Networks (DSN), 2014.

[40] Tommy Madjar, Corsin Camichel, Joe Wise, Selena Larson, and
Chris Talib. OneNote Documents Increasingly Used to De-
liver Malware. https://www.proofpoint.com/us/blog/threat-insight/
onenote-documents-increasingly-used-to-deliver-malware, 2023.

[41] Dean Malmgren. textract (v1.6.4). https://textract.readthedocs.io/
en/stable/, 2017.

[42] Mandiant. Advanced Persistent Threats (APTs). https://www.
mandiant.com/resources/insights/apt-groups, 2023.

[43] Microsoft. New Feature in Office 2016 Can Block Macros and
Help Prevent Infection. https://www.microsoft.com/en-us/security/
blog/2016/03/22/new-feature-in-office-2016-can-block-macros-
and-help-prevent-infection/, 2016.

[44] Microsoft. Office VBA Reference. https://learn.microsoft.com/en-
us/office/vba/api/overview/#vba-programming-in-office, 2021.

[45] Microsoft. Hide Sheets and Use the xlVeryHidden Constant in a
Macro. https://learn.microsoft.com/en-us/office/troubleshoot/excel/
hide-sheet-and-use-xlveryhidden, 2022.

[46] Mamoru Mimura. Using Fake Text Vectors to Improve the Sensi-
tivity of Minority Class for Macro Malware Detection. Journal of
Information Security and Applications, 2020.

[47] Mamoru Mimura and Hiroya Miura. Detecting Unseen Malicious
VBA Macros with NLP Techniques. Journal of Information
Processing, 2019.

[48] Mamoru Mimura and Taro Ohminami. Towards Efficient Detec-
tion of Malicious VBA Macros with LSI. In Proc. of the 14th
International Workshop on Security (IWSEC), 2019.

[49] Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov,
Sebastian Schinzel, and Jörg Schwenk. Office Document Security
and Privacy. In Proc. of the 14th USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[50] Amirreza Niakanlahiji and Pedram Amini. Extracting “Sneaky”
Excel XLM Macros. https://inquest.net/blog/extracting-sneaky-
excel-xlm-macros/, 2019.

[51] Amirreza Niakanlahiji and Pedram Amini. Getting Sneakier:
Hidden Sheets, Data Connections, and XLM Macros. https://i
nquest.net/blog/getting-sneakier-hidden-sheets-data-connections-
and-xlm-macros/, 2020.

[52] Yuhei Otsubo, Mamoru Mimura, and Hidehiko Tanaka. O-Checker:
Detection of Malicious Documents Through Deviation from File
Format Specifications. BlackHat USA, 2016.

[53] Outflank. Old School: Evil Excel 4.0 Macros (XLM). https://web.
archive.org/web/20240515191958/https://www.outflank.nl/blog/
2018/10/06/old-school-evil-excel-4-0-macros-xlm/, 2018.

[54] Pierluigi Paganini. Russia-Linked APT 28 Group Observed using
DDE Attack to Deliver Malware. https://web.archive.org/web/
20240511190941/https://securityaffairs.com/65318/hacking/dde-
attack-apt28.html, 2017.

[55] Seongsu Park and Vitaly Kamluk. The BlueNoroff Cryptocurrency
Hunt is Still on. https://web.archive.org/web/20240519163632/
https://securelist.com/the-bluenoroff-cryptocurrency-hunt-is-still-
on/105488/, 2022.

[56] Michael Raggi. Chinese APT TA413 Resumes Targeting of Tibet
Following COVID-19 Themed Economic Espionage Campaign
Delivering Sepulcher Malware Targeting Europe. https://www.pr
oofpoint.com/us/blog/threat-insight/chinese-apt-ta413-resumes-tar
geting-tibet-following-covid-19-themed-economic, 2020.

[57] Michael Raggi. Injection Is the New Black: Novel RTF Template
Inject Technique Poised for Widespread Adoption Beyond APT
Actors. https://www.proofpoint.com/uk/blog/threat-insight/injecti
on-new-black-novel-rtf-template-inject-technique-poised-widespr
ead, 2021.

[58] RedxorBlue. Executing Macros from a DOCX with Remote
Template Injection. https://web.archive.org/web/20240515180936/
https://blog.redxorblue.com/2018/07/executing-macros-from-
docx-with-remote.html, 2018.

11

https://web.archive.org/web/20240517103343/https://www.trendmicro.com/en_us/research/23/i/apt34-deploys-phishing-attack-with-new-malware.html 
https://web.archive.org/web/20240517103343/https://www.trendmicro.com/en_us/research/23/i/apt34-deploys-phishing-attack-with-new-malware.html 
https://web.archive.org/web/20240517103343/https://www.trendmicro.com/en_us/research/23/i/apt34-deploys-phishing-attack-with-new-malware.html 
https://docs.fileformat.com/word-processing/rtf/
https://docs.fileformat.com/word-processing/rtf/
https://intezer.com/blog/malware-analysis/analyze-malicious-microsoft-office-files/
https://intezer.com/blog/malware-analysis/analyze-malicious-microsoft-office-files/
https://github.com/google/magika
https://web.archive.org/web/20240516081339/https://www.lenovo.com/us/en/glossary/rtf/
https://web.archive.org/web/20240516081339/https://www.lenovo.com/us/en/glossary/rtf/
https://web.archive.org/web/20240519175623/https://therecord.media/microsoft-adobe-bugs-cisa-kev-list
https://web.archive.org/web/20240519175623/https://therecord.media/microsoft-adobe-bugs-cisa-kev-list
https://exiftool.org/
https://pypi.org/project/python-magic/
https://pypi.org/project/python-magic/
https://github.com/InQuest/yara-rules-vt
https://www.iso.org/standard/71691.html
https://web.archive.org/web/20240515190020/https://clickallthethings.wordpress.com/2020/05/13/zloader-and-xlm-4-0-making-evasion-great-again/
https://web.archive.org/web/20240515190020/https://clickallthethings.wordpress.com/2020/05/13/zloader-and-xlm-4-0-making-evasion-great-again/
https://web.archive.org/web/20240515190020/https://clickallthethings.wordpress.com/2020/05/13/zloader-and-xlm-4-0-making-evasion-great-again/
https://reasonlabs.com/research/consumer-cybersecurity-trends-report-2023
https://reasonlabs.com/research/consumer-cybersecurity-trends-report-2023
http://decalage.info/rtf_tricks
http://decalage.info/rtf_tricks
https://www.decalage.info/en/vba_tools
https://github.com/decalage2/oletools/blob/master/oletools/msodde.py
https://github.com/decalage2/oletools/blob/master/oletools/msodde.py
https://github.com/decalage2/oletools
https://github.com/decalage2/oletools
https://www.proofpoint.com/us/blog/threat-insight/first-step-initial-access-leads-ransomware
https://www.proofpoint.com/us/blog/threat-insight/first-step-initial-access-leads-ransomware
https://www.loc.gov/preservation/digital/formats/fdd/fdd000509.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000509.shtml
https://www.proofpoint.com/us/blog/threat-insight/onenote-documents-increasingly-used-to-deliver-malware
https://www.proofpoint.com/us/blog/threat-insight/onenote-documents-increasingly-used-to-deliver-malware
https://textract.readthedocs.io/en/stable/
https://textract.readthedocs.io/en/stable/
https://www.mandiant.com/resources/insights/apt-groups
https://www.mandiant.com/resources/insights/apt-groups
https://www.microsoft.com/en-us/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/en-us/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/en-us/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://learn.microsoft.com/en-us/office/vba/api/overview/#vba-programming-in-office
https://learn.microsoft.com/en-us/office/vba/api/overview/#vba-programming-in-office
https://learn.microsoft.com/en-us/office/troubleshoot/excel/hide-sheet-and-use-xlveryhidden
https://learn.microsoft.com/en-us/office/troubleshoot/excel/hide-sheet-and-use-xlveryhidden
https://inquest.net/blog/extracting-sneaky-excel-xlm-macros/
https://inquest.net/blog/extracting-sneaky-excel-xlm-macros/
https://inquest.net/blog/getting-sneakier-hidden-sheets-data-connections-and-xlm-macros/
https://inquest.net/blog/getting-sneakier-hidden-sheets-data-connections-and-xlm-macros/
https://inquest.net/blog/getting-sneakier-hidden-sheets-data-connections-and-xlm-macros/
https://web.archive.org/web/20240515191958/https://www.outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://web.archive.org/web/20240515191958/https://www.outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://web.archive.org/web/20240515191958/https://www.outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://web.archive.org/web/20240511190941/https://securityaffairs.com/65318/hacking/dde-attack-apt28.html
https://web.archive.org/web/20240511190941/https://securityaffairs.com/65318/hacking/dde-attack-apt28.html
https://web.archive.org/web/20240511190941/https://securityaffairs.com/65318/hacking/dde-attack-apt28.html
https://web.archive.org/web/20240519163632/https://securelist.com/the-bluenoroff-cryptocurrency-hunt-is-still-on/105488/
https://web.archive.org/web/20240519163632/https://securelist.com/the-bluenoroff-cryptocurrency-hunt-is-still-on/105488/
https://web.archive.org/web/20240519163632/https://securelist.com/the-bluenoroff-cryptocurrency-hunt-is-still-on/105488/
https://www.proofpoint.com/us/blog/threat-insight/chinese-apt-ta413-resumes-targeting-tibet-following-covid-19-themed-economic
https://www.proofpoint.com/us/blog/threat-insight/chinese-apt-ta413-resumes-targeting-tibet-following-covid-19-themed-economic
https://www.proofpoint.com/us/blog/threat-insight/chinese-apt-ta413-resumes-targeting-tibet-following-covid-19-themed-economic
https://www.proofpoint.com/uk/blog/threat-insight/injection-new-black-novel-rtf-template-inject-technique-poised-widespread
https://www.proofpoint.com/uk/blog/threat-insight/injection-new-black-novel-rtf-template-inject-technique-poised-widespread
https://www.proofpoint.com/uk/blog/threat-insight/injection-new-black-novel-rtf-template-inject-technique-poised-widespread
https://web.archive.org/web/20240515180936/https://blog.redxorblue.com/2018/07/executing-macros-from-docx-with-remote.html
https://web.archive.org/web/20240515180936/https://blog.redxorblue.com/2018/07/executing-macros-from-docx-with-remote.html
https://web.archive.org/web/20240515180936/https://blog.redxorblue.com/2018/07/executing-macros-from-docx-with-remote.html


[59] Florian Roth. Signature-Base. https://github.com/Neo23x0/signatur
e-base/tree/master/yara, 2021.

[60] Nicola Ruaro, Fabio Pagani, Stefano Ortolani, Christopher Kruegel,
and Giovanni Vigna. SYMBEXCEL: Automated Analysis and
Understanding of Malicious Excel 4.0 Macros. In Proc of the
43rd IEEE Symposium on Security and Privacy (S&P), 2022.

[61] Alex Scroxton. IT Leaders Fear ‘Trickle-Down’ of Nation-State
Cyber Attacks. https://web.archive.org/web/20240515181415/
https://www.computerweekly.com/news/252505571/IT-leaders-
fear-trickle-down-of-nation-state-cyber-attacks, 2021.

[62] Chintan Shah. An Inside Look into Microsoft Rich Text Format
and OLE Exploits. https://web.archive.org/web/20240517151249/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-
look-into-microsoft-rich-text-format-and-ole-exploits/, 2020.

[63] Chintan Shah. The Tale of Two Exploits - Breaking Down
CVE-2023-36884 and the Infection Chain. https://www.trellix.
com/about/newsroom/stories/research/breaking-down-cve-2023-
36884-and-the-infection-chain/, 2023.

[64] Charles Smutz and Angelos Stavrou. Malicious PDF Detection Us-
ing Metadata and Structural Features. In Proc. of the 28th Annual
Computer Security Applications Conference (ACSAC), 2012.

[65] Nedim Šrndic and Pavel Laskov. Detection of Malicious PDF Files
Based on Hierarchical Document Structure. In Proc. of the 20th
Network & Distributed System Security Symposium (NDSS), 2013.

[66] Etienne Stalmans and Saif El-Sherei. Macro-less Code Exec in MS
Word. https://sensepost.com/blog/2017/macro-less-code-exec-in-
msword/, 2017.

[67] TrendLabs APT Research Team. Spear-Phishing Email: Most
Favored APT Attack Bait. https://documents.trendmicro.com/
assets/wp/wp-spear-phishing-email-most-favored-apt-attack-bait.
pdf, 2012.

[68] Umut Tosun. How to Analyze RTF Template Injec-
tion Attacks. https://www.letsdefend.io/blog/how-to-analyze-rtf-
template-injection-attacks, 2022.

[69] Jia Yan, Ming Wan, Xiangkun Jia, Lingyun Ying, Purui Su, and
Zhanyi Wang. DitDetector: Bimodal Learning based on Deceptive
Image and Text for Macro Malware Detection. In Proc. of the
38th Annual Computer Security Applications Conference (ACSAC),
2022.

[70] Junfeng Yang. How RTF Malware Evades Static Signature-
Based Detection. https://www.mandiant.com/resources/blog/how-r
tf-malware-evad, 2024.

[71] Xiaopeng Zhang. New Remcos RAT Variant is Spreading
by Exploiting CVE-2017-1188. https://web.archive.org/web/
20240516131624/https://www.fortinet.com/blog/threat-research/
new-remcos-rat-variant-is-spreading-by-exploiting-cve-2017-
11882, 2018.

[72] Xin Zhou and Jianmin Pang. Expdf: Exploits Detection System
Based on Machine-Learning. International Journal of Computa-
tional Intelligence Systems, 2019.

12

https://github.com/Neo23x0/signature-base/tree/master/yara
https://github.com/Neo23x0/signature-base/tree/master/yara
https://web.archive.org/web/20240515181415/https://www.computerweekly.com/news/252505571/IT-leaders-fear-trickle-down-of-nation-state-cyber-attacks
https://web.archive.org/web/20240515181415/https://www.computerweekly.com/news/252505571/IT-leaders-fear-trickle-down-of-nation-state-cyber-attacks
https://web.archive.org/web/20240515181415/https://www.computerweekly.com/news/252505571/IT-leaders-fear-trickle-down-of-nation-state-cyber-attacks
https://web.archive.org/web/20240517151249/https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-look-into-microsoft-rich-text-format-and-ole-exploits/
https://web.archive.org/web/20240517151249/https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-look-into-microsoft-rich-text-format-and-ole-exploits/
https://web.archive.org/web/20240517151249/https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-look-into-microsoft-rich-text-format-and-ole-exploits/
https://www.trellix.com/about/newsroom/stories/research/breaking-down-cve-2023-36884-and-the-infection-chain/
https://www.trellix.com/about/newsroom/stories/research/breaking-down-cve-2023-36884-and-the-infection-chain/
https://www.trellix.com/about/newsroom/stories/research/breaking-down-cve-2023-36884-and-the-infection-chain/
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://documents.trendmicro.com/assets/wp/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
https://documents.trendmicro.com/assets/wp/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
https://documents.trendmicro.com/assets/wp/wp-spear-phishing-email-most-favored-apt-attack-bait.pdf
https://www.letsdefend.io/blog/how-to-analyze-rtf-template-injection-attacks
https://www.letsdefend.io/blog/how-to-analyze-rtf-template-injection-attacks
https://www.mandiant.com/resources/blog/how-rtf-malware-evad
https://www.mandiant.com/resources/blog/how-rtf-malware-evad
https://web.archive.org/web/20240516131624/https://www.fortinet.com/blog/threat-research/new-remcos-rat-variant-is-spreading-by-exploiting-cve-2017-11882
https://web.archive.org/web/20240516131624/https://www.fortinet.com/blog/threat-research/new-remcos-rat-variant-is-spreading-by-exploiting-cve-2017-11882
https://web.archive.org/web/20240516131624/https://www.fortinet.com/blog/threat-research/new-remcos-rat-variant-is-spreading-by-exploiting-cve-2017-11882
https://web.archive.org/web/20240516131624/https://www.fortinet.com/blog/threat-research/new-remcos-rat-variant-is-spreading-by-exploiting-cve-2017-11882

	Introduction
	Document File Types
	Document-based Threats

	Automating Malicious Document Analysis
	Dataset
	Malicious File Analysis
	Malicious Content Extraction

	Malicious Document Characteristics
	Evasion Techniques
	Other Advanced Techniques

	Threats to Validity
	Recommendations and Future Directions
	Related Work
	Conclusion
	References

