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Abstract
In recent years, the cyber threat intelligence (CTI) community has
invested significant effort in building knowledge bases that catalog
threat groups. These knowledge bases associate each threat group
with its observed behaviors, including their Tactics, Techniques,
and Procedures (TTPs) as well as the malware and tools they em-
ploy during attacks. However, the distinctiveness and completeness
of such behavioral profiles remain largely unexplored, despite being
critical for tasks such as threat group attribution. In this work, we
systematically analyze threat group profiles built from two public
CTI knowledge bases: MITRE ATT&CK and Malpedia. We first
investigate what fraction of threat groups have group-specific be-
haviors, i.e., behaviors used exclusively by a single group. We find
that only 34% of threat groups in ATT&CK have group-specific
techniques, limiting the use of techniques as reliable behavioral
signatures to identify the threat group behind an attack. The soft-
ware used by a threat group proves to be more distinctive, with 73%
of ATT&CK groups using group-specific software. However, this
percentage drops to 24% in the broader Malpedia dataset. Next, we
evaluate how group profiles improve when data from both sources
are combined.While coverage improves modestly, the proportion of
groups with group-specific behaviors remains under 30%. We then
enhance profiles by adding exploited vulnerabilities and additional
techniques extracted from threat reports. Despite the additional
information, 64% of groups still lack any group-specific behavior.
Our findings raise concerns about the specificity of existing behav-
ioral profiles and highlight the need for caution, as well as further
improvement, when using them for threat group attribution.

CCS Concepts
• Security and privacy→ Systems security.

Keywords
Threat Intelligence, Threat Group, Threat Actor, Behavioral Profile,
TTP, CTI, MITRE ATT&CK, Malpedia
ACM Reference Format:
Aakanksha Saha, Martina Lindorfer, and Juan Caballero. 2026. Kitten or
Panda? Measuring the Specificity of Threat Group Behaviors in Public CTI
Knowledge Bases. InACMAsia Conference on Computer and Communications
Security (ASIA CCS ’26), June 01–05, 2026, Bangalore, India. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3779208.3786258

This work is licensed under a Creative Commons Attribution 4.0 International License.
ASIA CCS ’26, Bangalore, India
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2356-8/2026/06
https://doi.org/10.1145/3779208.3786258

1 Introduction
In recent years, the cyber threat intelligence (CTI) community has
explored the behavioral characteristics of threat groups (or threat
actors), such as the Tactics, Techniques, and Procedures (TTPs) used
to gain access, move laterally, maintain persistence, and exfiltrate
data [2, 5, 20, 45, 56, 64]. Behavioral characteristics are thought to
be distinctive, remain stable over time, and be able to link seemingly
unrelated attacks from the same threat group [23]. In fact, when
sufficiently distinctive, behavioral characteristics such as TTPs can
serve as behavioral signatures that enable reliable attribution [39].
Models like the Pyramid of Pain [4] place TTPs at the top of the
pyramid in terms of cost for an adversary to change them. Apart
from TTPs, other behavioral characteristics also exist, for example,
the software tools used by a threat group may be distinctive, par-
ticularly if the malware is developed in-house. Similarly, exploited
vulnerabilities can be characteristic, especially when a group tar-
gets uncommon software or uses custom-developed exploits. Even
the textual content used in campaigns can be characteristic of a
threat group, with recent relatedwork leveraging phishing SMS con-
tents [34], ransomware notes [61], and cross-file-type features [49]
to identify attacks from the same campaign and threat group.

We refer to a threat group’s observed behaviors as its group pro-
file. Accurate threat group profiles are fundamental to incident cor-
relation, attribution, the development of behavioral detection rules,
and proactive threat hunting. Group profiles can be constructed
from threat reports, which typically describe, in natural language,
analyses of specific attacks and their attribution to specific threat
groups. Threat reports may come from a single source (e.g., a spe-
cific cybersecurity vendor) or be aggregated by CTI knowledge
bases [40, 58] and sharing platforms [6, 20].

While the potential of such behavioral profiles has been widely
acknowledged, few studies have examined how distinctive these
profiles truly are or how complete our understanding of these
behaviors is, particularly given the varying quality and scope of the
data sources used to build them. One concern is that many behaviors
in these profiles can be generic, i.e., used bymany threat groups, thus
providing little information about the groups using them. These
include common techniques (e.g., spearphishing, malware auto-
start through registry keys), widely available software (e.g., abused
penetration testing tools, open-source projects, malware kits sold
on underground forums), and prevalent vulnerabilities (e.g., those
affecting popular software with public exploits). Threat groups may
acquire such tools and exploits for convenience, reduced operational
costs, or to obscure attribution.

Recent work that interviewed threat analysts to gain insights
into the attribution of advanced persistent threats (APTs) [50] and
ransomware groups [60] showed that, although TTPs are used in the
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attribution process, they are often considered generic and inconsis-
tent. Ourwork uses a data-driven approach to identify group-specific
behaviors, i.e., behaviors used by a single threat group and therefore
suitable for reliable attribution. Group-specific behaviors can con-
sist of single behaviors or combinations of behaviors (e.g., pairs or
triplets). When observed on a protected system, such group-specific
behaviors serve as behavioral signatures that uniquely identify the
responsible threat group. However, what fraction of threat groups
exhibit group-specific behaviors remains an open question. De-
termining whether a behavior is group-specific requires not only
analyzing the group that exhibits it, but also having comprehen-
sive coverage of behaviors across other threat groups. Without
this broader context, a behavior might appear group-specific when
it is not. For example, as more threat reports become available, a
behavior initially believed to be exclusive to group A may also be
observed in group B, indicating it is not group-specific.

We investigate how distinctive threat group behavioral profiles
in public knowledge bases are, how they can be expanded, and to
what extent they support reliable threat group attribution. We focus
on knowledge bases that are public (i.e., non-commercial), index
many threat reports, are periodically updated, provide a taxonomy
of threat groups, and organize information into group profiles.
These profiles include basic group metadata (e.g., name, aliases,
country), references to related threat reports, and descriptions of
group behaviors mentioned in those threat reports. We find two
knowledge bases satisfying those properties: MITRE’s Adversarial
Tactics, Techniques, and Common Knowledge (ATT&CK) [28] and
Malpedia [15]. We exclude other projects (e.g., MISP threat actor
galaxy [27], ThreatMiner [59], ORKL [38], and APTnotes [3]), as
they collect threat reports and associate them with threat groups
but do not extract or include behavioral information from those
reports into their group profiles. Moreover, Malpedia incorporates
data from the MISP threat actor galaxy, thereby indirectly covering
it. We also exclude commercial services that provide specialized
threat reports to paying customers [5], as their knowledge bases
are proprietary. Both ATT&CK and Malpedia provide their own
taxonomies of threat groups and associated software tools. A key
distinction is that ATT&CK also includes a taxonomy of TTPs,
integrating attack techniques directly into the group profiles. Based
on ATT&CK and Malpedia, we answer the following questions:

RQ1:What fraction of the threat groups in ATT&CK andMal-
pedia have group-specific behaviors? We separately analyze
the group profiles created using only the information available in
ATT&CK and Malpedia. Identifying groups based on TTPs is chal-
lenging as only 52 (34.2%) groups in ATT&CK have group-specific
techniques. It is somewhat easier to identify groups through the
software they use, with 111 (73.0%) groups in ATT&CK having
group-specific software. However, this percentage is significantly
lower in Malpedia, where only 192 (24.0%) have group-specific soft-
ware. This discrepancy stems from threat reports that disproportion-
ately focus on a subset of high-profile groups, leaving less-known
groups with sparse reporting to build their profiles. Combining
techniques and software into joint profiles increases the groups
with group-specific behaviors from 111 (73.0%) to 124 (81.6%).

RQ2:Howcomplementary is the information in both datasets?
How much do group profiles improve when combining data

from both sources? Both datasets differ substantially in volume.
Malpedia provides broader coverage of the threat landscape than
ATT&CK, comprising 5.2 times more threat groups (800 vs. 152) and
4.2 times more software (3,367 vs. 794). This expanded scope stems
from Malpedia indexing 16.9 times more threat reports (15,699 re-
port URLs vs. 930). To assess their overlap, we normalize group
and software names across the datasets. Both datasets have little
overlap, with only 145 groups and 498 software entries in common.
The corresponding Jaccard Index values are 17.7% for groups, 13.5%
for software, and just 3.2% for report URLs. The low intersection
indicates that each dataset captures a different view of the threat
group landscape, highlighting their complementary nature.

We create joint group profiles using the data from both datasets,
identifying 236 (29.2%) groups with group-specific behaviors, com-
pared to 124 groups using only ATT&CK and 192 using only Malpe-
dia. Despite combining the two datasets, more than 70% of groups
exhibit no group-specific behavior.

RQ3: What additional information currently not in ATT&CK
and Malpedia could make threat group profiles more com-
plete?We examine how group profiles can be improved with ad-
ditional information extracted from threat reports. First, we build
vulnerability profiles for each threat group with the Common Vul-
nerabilities and Exposures (CVE) identifiers [44] of the vulnera-
bilities that the group has exploited. The number of groups with
at least one group-specific vulnerability is 48 (31.6%) in ATT&CK,
112 (14.0%) in Malpedia, and 119 (14.7%) when combining both
datasets. Thus, exploited vulnerabilities tend to be less distinctive
than the software used but more distinctive than the techniques
employed. Next, we extend the group profiles with additional tech-
nique identifiers extracted from the threat reports. Since Malpedia
does not provide TTPs, this step allows us to extend its group
profiles with techniques. Incorporating these extracted techniques
increases the number of groups with group-specific behaviors from
52 (6.4%) to 68 (8.4%). Finally, we combine all available behavioral
indicators, including techniques, extracted techniques from reports,
software, and vulnerabilities, into unified group profiles, identify-
ing 291 (36.0%) groups with at least one group-specific behavior.
Despite leveraging all available information, a majority of groups
(64%) have no group-specific behaviors.

To better understand the limitations of current group profiles, we
also discuss the impact of under-reporting, i.e., incomplete coverage
of threat group behaviors. We observe that the number of technique
identifiers extracted from the ATT&CK threat reports is larger than
the number of techniques officially cataloged in ATT&CK from
those same reports. This discrepancy likely arises from the manual
nature of the report analysis process by ATT&CK contributors,
emphasizing the need for automated approaches to extract TTPs
from threat reports [1, 17, 43]. We also observe that only 46.3%
of techniques and 64.1% of software entries in ATT&CK, and just
28.6% of software in Malpedia, are currently associated with at least
one threat group. The remaining entries were likely added to the
taxonomies because they were observed being used by adversaries
in the wild. However, their lack of association with specific threat
groups highlights the incomplete coverage of group profiles.

Artifacts. Our code and data are available at: https://github.com/
SecPriv/ThreatGroupCTI.

https://github.com/SecPriv/ThreatGroupCTI
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2 Dataset Comparison
For our analysis, we need public knowledge bases that index many
threat reports, are periodically updated, provide a taxonomy of
threat groups, and organize information into group profiles. While
there existmany repositories of threat reports (e.g., ThreatMiner [59],
APTnotes [3]) and reports can also be collected directly from secu-
rity vendor blogs [7], we identified only three datasets that explicitly
index threat reports by the threat groups they reference, making
them suitable for building group profiles. Those three sources are
MITRE’s Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK) [28], Malpedia [15], and the Malware Information Shar-
ing Platform (MISP) threat actor galaxy [27]. Furthermore, because
the MISP threat actor taxonomy is used as input to Malpedia, the
two sources largely overlap, as shown later in this section. We focus
on ATT&CK and Malpedia as our primary datasets.

In this section, we first detail the information in ATT&CK [28]
and Malpedia [15], and then set the base for answering RQ2 by
analyzing the extent of data overlap between the two datasets and
assessing how their contents complement each other.

2.1 Datasets

MITRE ATT&CK. ATT&CK provides taxonomies of offensive
and defensive techniques, software tools used by adversaries, and
threat groups. The techniques taxonomy comprises three domains:
Enterprise, Mobile, and Industrial Control Systems (ICS). Each do-
main defines a set of tactics that correspond to different steps in the
kill chain, such as Reconnaissance (TA0043), Persistence (TA0003),
and Lateral Movement (TA0008). Each tactic includes a set of tech-
niques. For example, Active Scanning (T1595) and Phishing for In-
formation (T1598) are techniques under the Reconnaissance tactic.
Techniques can also contain sub-techniques. For example, T1204.002
corresponds to the Malicious File sub-technique under the User
Execution (T1204) technique.

The threat group taxonomy covers nation-state actors, advanced
persistent threats (APTs), and some large for-profit actors such
as ransomware groups. A threat group profile includes a unique
identifier, a name, a list of aliases (called Associated Groups), and
the techniques and software used by the threat group.

Entries in the software taxonomy are categorized into Tools and
Malware. Tools include commercial software (e.g., Cobalt Strike),
open-source frameworks (e.g., Metasploit, Mimikatz), and built-
in operating system (OS) tools (e.g., PsExec, ipconfig). Malware
includes families specific to a single threat group (e.g., Carbanak)
as well as malware kits available in underground markets and used
by multiple threat groups (e.g., PoisonIvy RAT). The focus is on
software used by APTs listed in the group taxonomy; however,
ATT&CK also catalogs non-APT malware such as the Conficker
worm [31] and the SimBad Android malware [32]. Each taxonomy
entry contains URLs to threat reports related to the entry, such as
reports describing the techniques and software used.

Since its first public release in 2015, MITRE has published a
new ATT&CK version approximately every six months; the latest
version at the beginning of our study, v15.1, was released in April
2024. Each version may add new taxonomy entries (e.g., groups,
techniques, software), remove revoked entries, or mark entries as
deprecated (i.e., to be revoked soon).

Table 1: ATT&CK and Malpedia summary. Malpedia does
not have a techniques taxonomy. The low intersection and
Jaccard Index show that both datasets have little overlap. We
use the union of both datasets to build group profiles.

Data ATT&CK Malpedia ∩ ∪ Jaccard

Groups 152 800 145 807 17.7%
Techniques 839 - - 839 -
Software 794 3,367 498 3,663 13.5%
Report URLs 930 15,699 522 16,107 3.2%
Report FQDNs 218 2,002 194 2,026 9.6%
Reports 920 14,983 80 15,816 0.5%

Malpedia.Malpedia provides taxonomies of threat groups and soft-
ware. It does not provide a taxonomy of techniques nor reference
the techniques in ATT&CK. Similar to ATT&CK, the threat group
taxonomy focuses on APTs and nation-state actors. In contrast, the
software taxonomy aims to cover any malware family, regardless of
whether it is used by APTs or other types of attackers (e.g., for-profit
actors). The software taxonomy also includes a few security tools
(e.g., Cobalt Strike) but does not differentiate between malware and
tools. Each taxonomy entry for a threat group or software includes
URLs of threat reports related to the entry. We collect information
about groups and software using the Malpedia API and metadata
on threat reports (e.g., URL, title, author, publication date) from
the provided BibTex file. Malpedia is updated daily by adding new
bibliographic references labeled with the associated threat groups
and software. We obtained Malpedia data on February 18, 2025.
Malware Information Sharing Platform (MISP). We also ex-
amined the MISP threat-actor galaxy but found substantial overlap
withMalpedia, as Malpedia uses it as an input. In particular, we com-
pared the threat report URLs in both datasets on August 6, 2025. On
that date, the MISP galaxy contained 857 threat actors (the same as
Malpedia) and 2,660 associated threat-report URLs. Of these, 91.39%
of URLs and 95.99% of fully-qualified domain names (FQDNs) in
those URLs are also present in Malpedia, indicating a high degree of
overlap. Given this redundancy, we exclude MISP in our analysis, as
Malpedia already provides a representative coverage of its content.
Dataset comparison. Table 1 summarizes the contents of both
datasets. ATT&CK v15.1 contains 152 groups, 358 techniques, 481
sub-techniques, 794 software entries, and 930 URLs of threat reports
from which those associations are extracted. Of the 358 techniques,
121 (33.8%) have at least one sub-technique, while 237 (66.2%) do
not have sub-techniques. Among the total 839 techniques and sub-
techniques, 637 (75.9%) belong to the Enterprise domain (202 tech-
niques and 435 sub-techniques), 119 (14.2%) toMobile (73 techniques
and 46 sub-techniques), and 83 (9.9%) to ICS (83 techniques and
no sub-techniques). For simplicity, in the remainder of this paper,
we use the term techniques to refer to the combined set of 839
techniques and sub-techniques

In contrast, Malpedia does not include techniques; however, it
is much larger, containing 800 groups (5.2x), 3,367 software (4.2x),
and 15,699 (16.9x) report URLs. The report URLs in ATT&CK come
from 218 domains, compared to 2,002 (9.2x) in the Malpedia URLs,
indicating that Malpedia draws from a significantly more diverse
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set of sources (e.g., cybersecurity vendors and analyst blogs). We
download the content of each URL, filter errors, and identify reports
by the SHA256 of the downloaded content (most often an HTML
page or a PDF document). In total, we downloaded 920 unique
reports from the 930 ATT&CK URLs and 14,983 unique reports
from 15,699 Malpedia URLs. We use the downloaded reports to
extract additional information for extending the group profiles
discussed in Section 4. Note that we perform deduplication at the
report level (e.g., SHA-256 checksums). Because we build group
profiles from the set of techniques or software extracted across
all associated reports, near-duplicate reports describing the same
campaign do not inflate the prominence of any particular behavior.

2.2 Dataset Intersection and Union
Here, we examine the datasets’ overlap and the benefits of combin-
ing them. A key challenge is that group and software names differ
across the datasets, so we created a mapping to align them.

Each knowledge base provides a name and a list of aliases for
each threat group. We first normalized all names and aliases by con-
verting them to lowercase, removing common prefixes and suffixes
such as “group” or “framework,” replacing “team” with a space, and
converting “threat group” to “TG”. Then, we compute the intersec-
tion between the set of names and aliases for each group in each
taxonomy. If a group in ATT&CK shares a name or alias with a
group in Malpedia, we merge them by performing the union of their
sets. After merging, we assign a unique name to each normalized
group. We use the name in ATT&CK by default, and the name in
Malpedia if the group is not in ATT&CK. The normalization pro-
cess identified 145 groups common to both datasets, seven groups
unique to ATT&CK, 655 groups found exclusively in Malpedia, and
807 groups in the union of both datasets. We perform a similar
normalization for software. We first normalize all software names
and aliases by removing common prefixes (e.g., trojan, win, apk, elf)
and replacing special characters (e.g., _rat to rat). Then we merge
software entries that share at least one normalized name. The nor-
malization identifies 498 software that appear in both datasets, 2,869
only present in Malpedia, 296 only present in ATT&CK, and 3,663
in the union of both datasets.

Table 1 presents the overlap and union of report URLs, their
FQDNs, and the SHA-256 of the downloaded reports. We find only
522 report URLs shared between ATT&CK and Malpedia, result-
ing in a low Jaccard Index of 3.2%, indicating minimal overlap in
referenced sources. The overlap based on actual report content is
even smaller, only 80 reports have identical SHA-256s, yielding a
Jaccard Index of 0.5%. This discrepancy arises because downloading
the same URL multiple times, particularly for HTML pages, can
produce different files due to non-deterministic content, such as
dynamic metadata or embedded advertisements. Overall, the over-
lap between the datasets is relatively low, with Malpedia providing
a much broader view of the threat landscape. This disparity may
be partly due to ATT&CK accepting contributions only from se-
lected entities, which restricts the number of included threat reports.
However, this selective approach contributes to under-reporting.
To address this limitation, we build group profiles by combining
group and software information from the union of both datasets.
Note that technique information is only available from ATT&CK.

Figure 1: CDF of the number of techniques used per group:
25% of groups use 7 or fewer techniques (Q25), 50% use 14 or
fewer (Q50), and 75% use 35 or fewer (Q75).

Takeaway:Malpedia provides a larger coverage of the threat
landscape, including 5.2 times more groups and 4.2 times
more software than ATT&CK. While not a strict superset of
ATT&CK, Malpedia covers 95.4% of ATT&CK’s groups and
62.7% of its software. Combining both datasets increases the
overall coverage of the threat landscape.

3 Group Profiles in the Datasets
In this section, we first address RQ1 by quantifying the proportion
of threat groups in ATT&CK and Malpedia that have group-specific
behaviors. We then address RQ2 by evaluating whether combining
the datasets improves the group profiles.

3.1 Technique Profiles
In ATT&CK, the association of techniques to groups is provided as
three separate group spreadsheets, one per domain.We combine the
three group spreadsheets to obtain the set of techniques associated
with each group, which we term the group’s technique profile.

We first measure the size of the technique profiles. Figure 1
shows the cumulative distribution function (CDF) of techniques
per group. On average, each group uses 23.2 techniques. 38 (25%)
have at most seven techniques, 76 (50%) have between 7 and 36,
and 38 (25%) have more than 35 techniques. The Lazarus Group
(G0032) has the highest number of techniques, with 92 techniques.
Four groups have no associated techniques and therefore cannot
be identified through their TTPs. We next examine whether the
remaining 148 groups contain group-specific techniques.

To this end, we build a mapping from each technique and sub-
technique to the threat groups that use them. Among the 839 tech-
niques cataloged in the ATT&CK framework, 388 (46.3%) have not
been associated with any group, 147 (17.5%) are linked to a single
group, 287 (34.2%) are associated with 2–37 groups, and 17 (2.0%)
are used by at least one quarter (38) of all groups. The fact that 388
(46.3%) of all techniques in ATT&CK are not associated with any
group raises concerns about coverage, as these techniques were
presumably added to the taxonomy based on observed adversary
behavior, yet remain unlinked to any known group.
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Generic techniques. We call techniques used by many groups
generic, as their presence in a protected environment offers limited
value in distinguishing specific adversaries. Table 2 lists the top
10 techniques by number of groups. The most common technique
is Malicious File (T1204.002) used by 79 groups where adversaries
rely on users opening a malicious file, followed by Ingress Tool
Transfer (T1105, 76 groups) where adversaries transfer tools or
files from an external system into a compromised environment, and
Spearphishing Attachment (T1566.001, 72 groups) where emails with
a malicious attachment are used as an initial compromise vector.

In addition, we analyze which pairs of techniques tend to occur
together. For this we compute the co-occurrence rate

|𝐺𝐴∩𝐺𝐵 |
𝑚𝑎𝑥 ( |𝐺𝐴 |, |𝐺𝐵 | )

where 𝐺𝐴 and 𝐺𝐵 are the sets of groups using techniques 𝐴 and 𝐵,
respectively. We find five pairs with a co-occurrence rate of at least
0.75. The highest rates are 0.951 betweenMalicious Link (T1204.001)
and Spearphishing Link (T1566.002), followed by 0.886 forMalicious
File (T1204.002) and Spearphishing Attachment (T1566.001). The
four techniques in these two pairs are generic, each used by at least
one quarter of the groups, and are also semantically related, where
a spearphishing link is a type of malicious link, and a spearphishing
attachment is a malicious file that the user is lured to open.
Technique profile similarity.We compute the similarity of the
technique profiles of each pair of groups using the Jaccard Index,
after removing the top ten generic techniques in Table 2. The mean
Jaccard Index is 0.04, the median is 0.02, and the maximum Jaccard
Index is 0.50. Most pairs have low similarity scores, suggesting that
their technique profile are unique. However, this may be due to a
large space of techniques and limited coverage in ATT&CK.

Figure 2 shows a heatmap of the 12 groups with the highest
Jaccard Index pairs (i.e., at least 0.33). These pairs are due to a small
number of techniques in the profiles. For example, Scarlet Mimic
(G0029) and Ferocious Kitten (G0137) each have two non-generic
techniques, and they share one of them (Masquerading: Right-to-
Left Override), resulting in a 0.50 Jaccard Index. Because there are
few non-generic techniques, even a single shared technique gives a
relatively high similarity score.
Group-specific techniques.We identify 147 (17.5%) group-specific
techniques that are associated with a single group. Only 52 (34.2%)
groups have group-specific techniques in ATT&CK. The mean num-
ber of group-specific techniques is 0.99. While most techniques are
shared across groups, a few stand out for their distinctiveness, with
the maximum number (16) of group-specific techniques observed
in Windshift (G0112).

A key question is whether these group-specific techniques are
due to limited coverage in ATT&CK, or if they truly represent
capabilities developed or exclusively adopted by a single group.
Table 3 provides examples of group-specific techniques. Some of
these group-specific techniques appear indeed quite specific to
their respective groups. For example, APT12 aka Numbered Panda
(G0005) is the only group using DNS Calculation (T1568.003), where
adversaries perform calculations on addresses returned in DNS
results to determine which port and IP address to use for command
and control. Conversely, some group-specific techniques may not
be truly specific to their groups. For example, APT28 aka Fancy

Table 2: Top 10 generic techniques, i.e., techniques used by
the largest number of groups.

ID Technique Name Groups

T1204.002 User Execution: Malicious File 79 (9.8%)
T1105 Ingress Tool Transfer 76 (9.4%)
T1566.001 Phishing: Spearphishing Attachment 72 (8.9%)
T1059.001 Command & Scripting: PowerShell 69 (8.5%)
T1588.002 Obtain Capabilities: Tool 66 (8.2%)
T1059.003 Command & Scripting: Win Cmd Shell 60 (7.4%)
T1036.005 Masquerading: Match Legitimate Name or Location 50 (6.2%)
T1547.001 Boot or Logon Autostart Execution: Registry/Startup Folder 50 (6.2%)
T1071.001 Application Layer Proocol: Web Protocols 47 (5.8%)
T1082 System Information Discovery 46 (5.7%)

Figure 2: Jaccard Index between the 12 most similar groups
after removing the top ten generic techniques. The mean
Jaccard Index across all groups is 0.04, the median is 0.02, and
the maximum Jaccard Index is 0.50.

Bear (G0007) is the only group associated with Network Denial of
Service (T1498), a fairly common attack technique likely to be used
by many groups, suggesting this uniqueness may reflect limited
coverage rather than actual exclusivity.
Beyond single group-specific techniques. We further examine
if there may be pairs or triplets of techniques that are specific to
a group. We identify an additional 63 groups with group-specific
technique pairs, whereas no additional groups have group-specific
technique triplets. However, most pairs do not seem truly distinc-
tive. For instance, APT-C-23 (G1028) is the only group with the
pair Match Legitimate Name or Location (T1655.001) and Phishing
in Mobile (T1660). However, this is likely due to most groups be-
ing associated with the more common Phishing (T1566) technique
that is not specific to the mobile domain. In another case, Malteiro
(G1026) exhibits two group-specific technique pairs: Malicious File
(T1204.002) and Financial Theft (T1657), and Security Software Dis-
covery (T1518.001) and Financial Theft (T1657). These largely reflect
the group’s financial motivation rather than a behavior specific to
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Table 3: Examples of group-specific techniques, some groups
have multiple group-specific techniques.

Group Name Technique ID Technique Name

APT12 T1568.003 DNS Calculation

APT28 T1550.001 Application Access Token
T1546.015 Component Object Model Hijacking
T1001.001 Junk Data
T1137.002 Office Test
T1211 Exploitation for Defense Evasion
T1498 Network Denial of Service

APT32 T1552.002 Credentials in Registry
T1564.004 NTFS File Attributes

APT37 T1123 Audio Capture

APT38 T1562.003 Impair Command History Logging
T1565.003 Runtime Data Manipulation
T1565.001 Stored Data Manipulation
T1565.002 Transmitted Data Manipulation

APT39 T1546.010 AppInit DLLs
T1059.010 AutoHotKey & AutoIT
T1056 Input Capture

APT41 T1596.005 Scan Databases

APT5 T1554 Compromise Host Software Binary

Axiom T1563.002 RDP Hijacking
T1001.002 Steganography
T1553 Subvert Trust Controls

Chimera T1110.004 Credential Stuffing
T1556.001 Domain Controller Authentication

Cobalt Group T1218.008 Odbcconf

DarkVishnya T1200 Hardware Additions

Darkhotel T1497 Virtualization/Sandbox Evasion

the group, i.e., other groups involved in financial theft may also
exhibit those behavior pairs. Furthermore, using pairs of techniques
to attribute a group requires both techniques to be observed in the
compromised network, which makes evasion easier if adversaries
vary just one technique. Overall, technique pairs appear less robust
as signatures and would require human vetting to ensure they truly
represent distinctive group behaviors. While manual validation
may also be needed for single group-specific techniques, the need
for vetting increases as the tuple size grows.
Unsupervised clustering. We applied unsupervised clustering
to identify ATT&CK groups using similar techniques. We use the
Hierarchical Density-Based Clustering (HDBSCAN) [8] because
it can find clusters of arbitrary shape and does not require prior
knowledge of the number of clusters. It identified two clusters, one
with 102 groups and another with three, marking the remaining
groups as noise. The large cluster highlights how generic techniques
used by multiple groups can make groups look similar.

Takeaway: Only 52 groups (34.2%) have group-specific tech-
niques. However, other groups may still be distinguishable
by group-specific technique combinations, as seen by the
low mean Jaccard Index of 0.06. Under-reporting remains a
concern, as only 53.7% of ATT&CK techniques are observed
in group profiles, and some seemingly group-specific tech-
niques may not be truly specific.

Figure 3: CDF of the number of software per group. 25% of
groups used one or fewer software (Q25). 50% of groups used
2 or fewer software (Q50). Most groups used a relatively small
number of software, with 75% using 6 or fewer (Q75).

3.2 Software Profiles
In this section, we explore whether the software used by each group
identifies it. For each group, we build software profiles using the
sets of normalized software names associated with the group in
each dataset and from their union.

We first examine each dataset separately. Of the 794 software
in ATT&CK, 509 (64.1%) are associated with at least one group.
For Malpedia, the fraction is significantly smaller, where out of
3,367 software, only 963 (28.6%) are associated to at least one group.
Software not associated to groups typically corresponds to non-
APT malware. For example, the Conficker worm [31] and the Babuk
ransomware [30] each appear in both ATT&CK and Malpedia and
are not associated to groups in either dataset. The lower ratio of
software associated to groups inMalpedia is likely due toMalpedia’s
larger coverage of non-APT malware.

The fraction of groups with a non-empty software profile is
also larger in ATT&CK where 138 out of 152 (90.8%) groups have
associated software compared to 220 (27.5%) out of 800 groups in
Malpedia. However, Malpedia contains 16.9 times as many threat
reports as ATT&CK, providing significantly more data for building
software profiles. This difference arises because many lesser-known
groups have few reports to support comprehensive profiling.

Next, we examine the unified software profiles. Out of the total
807 groups in both datasets, 264 (32.7%) groups have a non-empty
software profile. Thus, over two-thirds of the groups cannot be
identified by their associated software. Figure 3 shows the CDF of
software per group for groups with at least one software. On aver-
age, each group uses 6.2 software, but most groups use a relatively
small number of software, with 25% of the groups having only one
associated software and 75% using six or fewer. The APT38 group
(G0082) has the highest number of software samples, with 120.
Generic software. We call the software used by many groups
generic, as their detection offers limited value in distinguishing
specific adversaries. Table 4 lists the top 10 software by the number
of groups where the software appears in the group’s profile. All
10 software appear in ATT&CK, while only five are present in
Malpedia. The ones missing from Malpedia include four OS tools
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Table 4: Top 10 generic software by number of groups us-
ing them, their type in ATT&CK (å=Tool or È=Malware),
whether they are in Malpedia (✓), and the number and per-
centage of groups using them.

ID Name ATT&CK Type Malpedia Groups

S0002 Mimikatz å ✓ 46 (5.7%)
S0029 PsExec å ✗ 31 (3.8%)
S0039 Net å ✗ 30 (3.7%)
S0154 Cobalt Strike È ✓ 26 (3.2%)
S0013 PlugX È ✓ 25 (3.1%)
S0363 Empire å ✗ 15 (1.8%)
S0012 PoisonIvy È ✓ 14 (1.7%)
S0100 ipconfig å ✗ 13 (1.6%)
S0097 Ping å ✗ 13 (1.6%)
S0349 LaZagne å ✓ 12 (1.5%)

(PsExec, Net, ipconfig, Ping) and the open-source Empire remote
administration and post-exploitation framework [11]. Of these ten
software entries, seven are classified as tools in ATT&CK and three
as malware. Malpedia does not provide such classification. Among
the three labeled as malware in ATT&CK, Cobalt Strike should
arguably be categorized as a tool, as it is a commercial penetration-
testing package [14], whereas PlugX and PoisonIvy are remote
administration tools (RATs) commonly available on underground
markets. In summary, generic software typically refers to tools and
malware kits that are either commercially sold or widely accessible.

We identify 88 software tools that are not marked as such in
ATT&CK but are used by multiple groups. These likely correspond
to publicly available malware kits sold or shared on underground
forums. In addition to Cobalt Strike, PlugX, and PoisonIvy (see
Table 4), other commonly reused malware include gh0st RAT (used
by 10 groups), China Chopper web shell (8 groups), 8.t dropper (8
groups), njRAT (7 groups), and ShadowPad (7 groups). Of these,
gh0st is open-source [55], njRAT’s source code was leaked [12],
China Chopper is publicly available [9], and both 8.t and ShadowPad
have been reported to be privately shared among Chinese threat
groups [26, 52]. In some cases, the groups using the same software
may be related. For instance, Bistromath is reported by Malpedia
to be used by both Lazarus Group and Silent Chollima, the latter
being a subsidiary of Lazarus [13].
Group-specific software.We term software as group-specific if
it has only been associated with one group and is not classified
as a tool in ATT&CK. We exclude tools, even when associated
with a single group, because they can be readily adopted by others
in the future, thereby providing weak attribution. Of the 3,663
software across both datasets, 952 (26.0%) are associated with a
single group, making them group-specific software. The detection
of group-specific software may allow attributing the group behind
an attack. Of the 807 total groups, 213 (26.3%) have at least one
group-specific software associated with them. Among these 213
groups, the mean and median number of group-specific software
are 4.5 and 1.0, respectively, and 130 groups (16.1%) have only
group-specific software. Some threat groups develop many custom
tools for their attacks, for example, APT38 (G0082) has the highest
number, with 99 group-specific software.

Beyond single group-specific software. We also analyze group-
specific software pairs. Beyond the 111 groups with group-specific
software in ATT&CK, we identify 11 additional groups with no
group-specific software but with group-specific software pairs.
However, similar to what we observe with group-specific technique
pairs, group-specific software pairs do not look truly specific to the
groups. For example, DarkVishnya (G0105) is the only group using
both PsExec (S0029) andWinexe (S0191). However, both PsExec and
Winexe are common administrative tools used by multiple groups,
so the combination of the two tools does not appear to be a robust
signature for that group. Overall, all 11 groups with group-specific
software pairs include a benign tool in each pair, indicating that
the software pairs are not robust as behavioral signatures.

Takeaway: In ATT&CK, 111 groups (73.0%) have group-
specific software, whereas in Malpedia, only 192 groups
(24.0%) have that. Combining both datasets increases the
number of groups to 213 (26.3%), which still remains rela-
tively low. Among the 264 groups with non-empty software
profiles, the median number of software is 2, indicating that
most threat groups operate with limited toolsets. However,
some groups maintain extensive custom toolsets, for exam-
ple, APT38 has 99 group-specific software.

3.3 Combining Group Profiles
Table 5 summarizes the number of groups with non-empty profiles
and those with at least one group-specific entry across all differ-
ent profile-building methods we examined. The first three rows
correspond to the profiles we discussed in this section, based on
techniques only, software only, and the combination of both.

To answer RQ1, our results show that identifying groups using
techniques is challenging, as only 52 (34.2%) groups in ATT&CK
have group-specific techniques. Identification is easier using soft-
ware, with 111 (73.0%) of ATT&CK groups having group-specific
software. However, this percentage is significantly lower in Malpe-
dia, where only 192 (24.0%) of groups have group-specific software.
The lower ratio in Malpedia likely reflects its focus on a subset
of high-profile groups, while many smaller groups have too few
reports to build robust profiles. Joint profiles combining both tech-
niques and software improve identification in ATT&CK by 12.6
percentage points, increasing the number of groups with group-
specific behaviors from 111 (73.0%) to 124 (81.6%).

To answer RQ2, the joint profiles built combining data from both
datasets identify 236 (29.2%) groups with group-specific behaviors,
compared to 124 groups using only ATT&CK and 192 using only
Malpedia. Nonetheless, even when combining techniques and soft-
ware, over 70% of groups do not have any group-specific behavior.

4 Extending the Group Profiles
So far, the group profiles we examined have included techniques
and software from both ATT&CK and Malpedia. In this section, we
address RQ3, i.e., whether we can extend the group profiles with
additional data extracted from the downloaded threat reports. In
Section 4.1, we build a vulnerability profile for each group with
the vulnerabilities that the threat reports refer to as being used
by the group in its attacks. Then, in Section 4.2, we discuss how
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Table 5: Summary of group profiles across different data sources and combinations. We report the number of groups with
non-empty profiles and the subset with at least one group-specific behavior. The top section presents results for profiles built
using only techniques, only software, and a combination of both, as analyzed in Section 3. The middle section shows results
from profiles enriched with extracted CVE identifiers and additional techniques from downloaded threat reports, discussed in
Section 4. The bottom row shows the most comprehensive profiles, combining all available behavioral indicators.

Data Source(s) for Group Profiles ATT&CK Malpedia ATT&CK ∪ Malpedia
Non-Empty w/Group-Specific Non-Empty w/Group-Specific Non-Empty w/Group-Specific

Techniques 148 (97.4%) 52 (34.2%) - - 148 (18.3%) 52 (6.4%)
Software 138 (90.8%) 111 (73.0%) 220 (27.5%) 192 (24.0%) 264 (32.7%) 213 (26.3%)
Techniques ∪ Software 151 (99.3%) 124 (81.6%) 220 (27.5%) 192 (24.0%) 331 (41.0%) 236 (29.2%)

Vulnerabilities 86 (56.6%) 48 (31.6%) 261 (32.6%) 112 (14.0%) 277 (34.3%) 119 (14.7%)
Techniques++ 149 (98.0%) 60 (39.5%) 204 (25.5%) 69 (8.6%) 242 (30.0%) 68 (8.4%)

Techniques++ ∪ Software ∪ Vulnerabilities 152 (100%) 128 (84.2%) 391 (48.9%) 265 (33.1%) 418 (51.7%) 291 (36.0%)

we extend the technique profiles with additional technique identi-
fiers extracted from the threat reports. This allows incorporating
techniques mentioned from the threat reports in Malpedia and to
examine how complete the technique extraction was in ATT&CK.

4.1 Vulnerability Profiles
The selection of which vulnerabilities to exploit is largely group-
specific since it depends on the expected software used by the
targets and the exploits the group has access to. The observation
of specific vulnerabilities being exploited in a monitored system
could potentially be used to attribute the group behind an attack.
To build the vulnerability profiles, we first extract CVE identifiers
from the downloaded threat reports using the iocsearcher open-
source tool [7]. We then assign CVEs to groups. ATT&CK reports
are associated with a single threat group, whereas Malpedia reports
may reference multiple groups. When a report lists multiple groups,
it is unclear to which group the CVEs in the report should be
assigned. Therefore, we extract CVEs only from the 4,414 (29.4%)
Malpedia reports that reference a single group, along with all 920
ATT&CK reports.

The left part of Table 7 summarizes the extraction of CVE identi-
fiers from the downloaded threat reports. Among the 5,827 reports
that we analyzed, 1,186 (20.3%) contain at least one CVE identifier
for a total of 906 unique CVEs associated to 277 groups. Of the 807
groups, 277 (34.3%) have a non-empty vulnerability profile. The
other 530 (65.7%) groups have no vulnerabilities that can be used to
identify them. The mean CVEs per group is 8.9, and the maximum
is 176 CVEs reported for APT28 aka Fancy Bear (G0007).
Generic vulnerabilities. Overall, there are 368 vulnerabilities
used by at least two groups, 114 used by more than five groups, and
28 used by more than 10 groups. Table 6 lists the top 10 CVEs by the
number of groups using them. These generic vulnerabilities target
popular software, with Microsoft Office being the most frequently
targeted one, with four vulnerabilities. Nine of the 10 vulnerabilities
have publicly available proof-of-concept (PoC) exploits, either in
the Exploit Database [36] or on GitHub. We did not find any PoC
for CVE-2022-38028, which was a zero-day on the Windows Print
Spooler used by Russian threat groups [16].
Group-specific vulnerabilities. Of the 906 CVEs identified in the
reports, 538 (59.4%) are associated to a single group. We call these

Table 6: Top 10 generic CVEs by number of groups using them,
the software they target, and whether a proof-of-concept
(PoC) exploit is publicly available (✓).

Vulnerability Affected Software PoC Groups

CVE-2017-11882 Microsoft Office ✓ 46 (5.7%)
CVE-2012-0158 Microsoft Office ✓ 41 (5.1%)
CVE-2017-0199 Microsoft Office ✓ 34 (4.2%)
CVE-2021-44228 Apache Log4j ✓ 28 (3.5%)
CVE-2022-30190 Microsoft Windows (MSDT) ✓ 25 (3.1%)
CVE-2022-26134 Atlassian Confluence ✓ 21 (2.6%)
CVE-2018-0802 Microsoft Office ✓ 20 (2.5%)
CVE-2022-38028 Windows Print Spooler ✗ 17 (2.1%)
CVE-2023-38831 RARLAB WinRAR ✓ 17 (2.1%)
CVE-2024-37085 VMware ESXi ✓ 16 (2.0%)

group-specific vulnerabilities. The Vulnerabilities row in Table 5
summarizes the generated profiles. Of the 807 groups, 119 (14.7%)
have at least one group-specific CVE. Across these 119 groups,
the mean and median vulnerabilities per group are 4.5 and 2.0,
respectively. The maximum is for Gorgon (G0078), which uses 78
CVEs. Table 8 shows examples of group-specific CVEs.

Takeaway: Only 119 (14.7%) groups have a group-specific
vulnerability. The set of vulnerabilities exploited by a group
is less specific than the set of software (27.8% of groups have
group-specific software), likely because many groups focus
on the same generic vulnerabilities affecting popular soft-
ware, often with publicly available exploits. However, vul-
nerabilities tend to be more group-specific than techniques,
as only 6.4% of groups have group-specific techniques.

4.2 Technique Identifiers in Reports
To extend the technique profiles, we look for explicit mentions of
technique identifiers in the downloaded reports. It is important
to note that threat reports may also include implicit references to
techniques, such as stating that a rootkit was used without explic-
itly providing a technique identifier. We discuss the extraction of
implicit references in Appendix A.
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Table 7: Summary of CVEs and technique identifiers extracted from the downloaded threat reports. For each dataset, we show
the total number of reports analyzed, the number of reports containing at least one CVE, the number of unique CVEs extracted,
and the number of threat groups associated with those CVEs. We provide analogous statistics for the technique identifiers.

Dataset # of Reports Reports w/CVE(s) CVEs Groups Reports w/Technique(s) Techniques Groups

ATT&CK 920 266 (29.0%) 325 86 122 (13.2%) 470 63
Malpedia 4,414 943 (21.3%) 853 261 541 (12.2%) 626 204
All 5,827 1,186 (20.3%) 906 277 650 (11.1%) 658 211

Table 8: Examples of group-specific vulnerabilities and the
software they target.

Group Name Vulnerability Affected Software

APT37 CVE-2015-3636 Linux Kernel
CVE-2016-0147 MSXML

Akira CVE-2019-6693 Fortinet FortiOS
CVE-2023-29336 Microsoft Windows
CVE-2023-35078 Ivanti Endpoint Manager

Kimsuky CVE-2012-4873 GNU Board
CVE-2018-14745 Samsung Galaxy
CVE-2018-2628 Oracle WebLogic Server

Gorgon CVE-2015-7036 Apple iOS
CVE-2019-8457 SQLite3
CVE-2019-8598 iOS, macOS

Sidewinder CVE-2018-4876 Adobe Experience Manager
CVE-2018-7445 MicroTik RouterOS
CVE-2019-2215 Google Android

Scattered Spider CVE-2015-2291 Ethernet driver on Windows
CVE-2021-35464 ForgeRock Acess Management
CVE-2022-0001 Intel Processors

Carbanak CVE-2013-2463 Oracle JRE
CVE-2015-2426 Microsoft Windows
CVE-2016-1010 Adobe Flash Player

To identify technique identifiers, we use a regular expression
provided by iocsearcher [7]. The technique identifiers, if present,
are typically provided in a table at the end of the threat report,
although they may also appear throughout the text.

The right part of Table 7 summarizes the extraction of technique
identifiers from the downloaded threat reports. From the 4,414 Mal-
pedia reports uniquely assigned to one group, we find 626 unique
technique identifiers associated to 204 groups appearing in 541
(12.2%) reports. Of these 626 techniques, 248 are not associated
with any groups in ATT&CK, i.e., are mentioned only in the Mal-
pedia reports. This shows that focusing on a small set of reports
leads to underreporting and that technique profiles extracted from
ATT&CK are likely to miss techniques used by a group.

We further apply iocsearcher to the 920 reports downloaded
from ATT&CK reference URLs and identify 470 unique technique
identifiers from 122 (13.2%) reports. These 122 reports are associated
with 63 groups. ATT&CK has 451 techniques associated with 152
groups, while we find a larger technique set (470) mentioned for 63
groups in 13.2% of the same reports. This indicates that ATT&CK
contributors may not be systematic in extracting all references of
techniques in the reports. Furthermore, we are only accounting for
explicit references through technique identifiers. Threat reports
may also include implicit references. However, extracting implicit
references to techniques would likely reinforce the under-reporting

trends we already observe. To recover the ATT&CK technique
identifiers implicitly mentioned in threat reports, previous work
has proposed using natural language processing (NLP) [1, 17, 43].
An alternative approach would be to use large language models
(LLMs), which have demonstrated their flexibility in a number of
security-related tasks involving natural language texts [10, 53].
Appendix A discusses our initial work to automate the extraction
of implicit references using LLMs.

Techniques++ in Table 5 captures the techniques profiles extended
with the technique identifiers extracted from the threat reports. It
shows that we can identify 69 groups using group-specific tech-
niques from Malpedia threat reports, compensating for Malpedia’s
lack of techniques. Notably, when we extract technique identifiers
directly from the ATT&CK reports and combine themwith the exist-
ing ATT&CK technique profiles, the number of groups with group-
specific techniques increases from 52 (34.2%) to 60 (39.5%), even
though we analyze the same set of threat reports. This highlights
that the manual extraction of techniques by ATT&CK contributors
is not always optimal.

Takeaway: The extraction of technique identifiers from
threat reports increases the groups with group-specific tech-
niques from 52 (6.4%) to 119 (14.7%), mostly due to additional
techniques in the Malpedia reports. Comparing the tech-
nique identifiers extracted from reports with those indexed
in ATT&CK shows that ATT&CK contributors may miss
techniques, indicating a need for automation.

5 Discussion
In this section, we discuss the limitations of our approach, mainly
due to partial coverage, the implications of our results, and potential
improvements to the analyzed datasets.

5.1 Limitations due to Partial Coverage
A key observation of our work is that determining whether a be-
havior is truly specific to a threat group requires good visibility on
other threat groups. Otherwise, group-specific behaviors may not
be truly group-specific, but rather appear to be so due to gaps in
the datasets. For example, APT28 was the only group in ATT&CK
associated with Network Denial of Service (T1498), a fairly common
attack technique used by many other groups. This likely happens
due to under-reporting. As more threat reports are analyzed, be-
haviors previously considered specific to a threat group may be
observed in other threat groups, making them no longer group-
specific. Thus, comprehensive coverage of the threat ecosystem is
essential for building accurate threat group profiles.



ASIA CCS ’26, June 01–05, 2026, Bangalore, India Aakanksha Saha, Martina Lindorfer, and Juan Caballero

Table 9: Entries published in the blogs of 11 cybersecurity vendors between the specified dates, the subset of those corresponding
to threat reports analyzing a malware family or APT, and the fraction of those that appear in Malpedia.

Cybersecurity Vendor Days (First → Last) First Entry Last Entry Entries Reports Included in Malpedia

Avast 351 2024-02-28 2025-02-13 10 4 1 (25.0%)
BitDefender 320 2024-09-12 2025-07-29 22 9 2 (22.2%)
Cisco-Talos 34 2025-06-26 2025-07-30 17 2 0 ( 0.0%)
Eset-WeLiveSecurity 220 2024-12-16 2025-07-24 19 13 8 (61.5%)
Fortinet 32 2025-06-23 2025-07-25 12 7 0 ( 0.0%)
GenDigital 46 2025-06-13 2025-07-29 11 3 0 ( 0.0%)
Kaspersky-SecureList 51 2025-06-09 2025-07-30 12 8 2 (25.0%)
PaloAlto-Unit42 50 2025-06-10 2025-07-30 21 8 2 (25.0%)
TrendMicro 130 2025-03-21 2025-07-29 54 18 8 (44.4%)
ZScaler 425 2024-05-30 2025-07-29 51 31 18 (58.1%)
Zimperium 62 2025-05-29 2025-07-30 12 4 0 ( 0.0%)
All 518 2024-02-28 2025-07-30 241 107 41 (38.3%)

We have identified three main factors affecting coverage that
may limit the generalizability of our results: (1) the type of datasets
used, (2) the dataset coverage, i.e., how completely they capture the
entire threat ecosystem, and (3) the approach used by the datasets
to extract behaviors from the threat reports. We discuss each of
these factors below:

Dataset selection. Our work analyzes the feasibility and chal-
lenges of building threat group behavioral profiles from two public
datasets (ATT&CK and Malpedia), rather than the general viability
of behavioral profiling of threat groups. Private CTI sources (e.g.,
commercial feeds, private threat exchanges) may cover additional
threat groups, offer more detailed threat group analysis, and in-
clude behaviors not present in public reports. There are two main
reasons we focus on public CTI. First, the subscription for a leading
commercial CTI feed usually ranges in the hundreds of thousands
of dollars per year [5], making access to even a single commercial
feed prohibitive for most research groups. Second, previous work
has analyzed CTI feeds providing indicators of compromise (IOCs)
such as IP addresses, domain names, and file hashes [5, 62]. Their
results show that both public [62] and private [5] IOC feeds are
affected by similar low coverage limitations, i.e., any two feeds
(regardless of whether public or private) have little IOC overlap.
Their findings hint that each vendor may only focus on a subset of
threats. Similarly, it is possible that each vendor focuses on specific
threat groups, with little overlap across vendors except for the most
prominent groups, Thus, no single vendor likely provides sufficient
coverage to build accurate group profiles. For this reason, we use
public datasets like ATT&CK and Malpedia, which aggregate threat
reports from multiple vendors.

A limitation introduced by our focus on public CTI data is that
cybersecurity vendors may omit relevant threat group behavioral
markers from their public reports. If the removal aims to keep such
data commercially relevant, the removed behavioral markers may
still appear in the vendor’s commercial feeds. On the other hand,
if they are removed to protect the privacy and security posture
of their clients, they will likely be removed not only from public
reports, but also from other sources (e.g., commercial feeds, private
threat exchanges) for the same reason.

Dataset coverage. Even large aggregators like Malpedia may only
cover a subset of all publicly available threat reports. To estimate
Malpedia’s coverage, we collected daily the entries in the RSS feeds
of 11 cybersecurity vendors between July 24 and July 30, 2025.
Each RSS entry corresponds to a post in the vendor’s blog with a
URL, a title, an author, and a publication date. While our collection
lasted one week, each feed provides a configurable number of the
last published entries. Thus, the 241 blog entries collected were
published over time periods ranging from 32 days for Fortinet up
to 425 days for ZScaler, as summarized in Table 9.

The vendors publish diverse posts in their blogs, including ad-
vertisements of their products, periodic summaries of the threat
landscape, security recommendations, and technical analyses of
threats. We manually examined the 241 entries, identifying 107
(44.4%) that we believe fall within Malpedia’s scope because they
capture the analysis of malware or APTs. Of those 107 threat re-
ports, 41 (38.3%) were included in the Malpedia BibTeX file as of
August 6, 2025. We also checked the latest Malpedia BibTeX file
from November 30, 2025, but the coverage remained the same.

This experiment shows that aggregators like Malpedia may
cover only a fraction of the publicly available CTI data, which
limits the completeness of the group profiles generated from such
data. Automating the collection of public CTI from a diverse set of
sources [7] could help improve the coverage and representativeness
of public threat intelligence knowledge bases.

Behavior extraction. Even when a threat report is part of a knowl-
edge base, not all the behaviors it describes may be included in the
knowledge base. There are two main reasons for this. First, some
behaviors may not be extracted. For example, Malpedia does not
include techniques in its group profiles, and neither Malpedia nor
ATT&CK include exploited vulnerabilities. To address this issue,
we extended the group profiles with techniques and vulnerabilities
directly extracted from the threat reports (see Section 4).

Second, the methodology used to extract behaviors from threat
reports also has an impact. Currently, such extraction is mainly
manual, causing some behaviors mentioned in the reports to be
missed. While ATT&CK had 451 techniques associated with 152
groups, we could extract a larger technique set (470) from explicit
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technique references in a subset of 13.2% of the ATT&CK reports.
This suggests that the manual extraction process used by ATT&CK
contributors is not exhaustive, motivating the need for automated
approaches, for example using NLP techniques [1, 17, 43], or LLMs.
We provide our initial results on using LLMs to extract implicit
technique references from threat reports in Appendix A.

5.2 Other Limitations
Temporal evolution. As the features and tactics [22, 24] of a
group evolve, and as new analyses of the group’s activities are
published, the profile of a group changes over time. Unfortunately,
most groups have too few reports, which limits our ability to analyze
the evolution of their profiles. Such analysis is only possible for
the few groups with multiple reports over several years. For the
interested reader, Appendix B illustrates the evolution of the profile
for the Lazarus Group (G0032) that has the most reports.
Beyond group-specific behaviors. We have explored group-
specific single behaviors, as well as group-specific behavioral pairs
and triplets. However, our approach may overlook groups charac-
terized by combinations of non-exclusive behaviors. An alternative
would be using supervised machine learning (ML) classifiers, which
we did not evaluate due to the lack of reliable ground-truth labels
required for training and evaluating them.
Additional behaviors. Group profiles could be further extended
with other behaviors in threat reports, such as payment services
used to receive victim payments, communication channels through
which victims and attackers interact, and the textual content shown
to victims (e.g., emails, ransom notes).
Naming. Vendors often use aliases to refer to the same malware
family [25, 33, 51] and threat group [46, 57]. To address this issue, we
have applied a normalization strategy to align group and software
names (see Section 2.2). However, some of our mappings could be
incorrect. We publicly release our mappings of group and software
names as part of our artifact for future reference.

5.3 Implications of Results
Group-specific behaviors can be used as behavioral signatures to
identify the threat group responsible for an attack, if they are dis-
tinct enough [39]. Out of 807 threat groups analyzed, 64% of threat
groups do not have group-specific behaviors, or we failed to identify
them due to limited coverage. However, a non-trivial 36% threat
groups had group-specific techniques, software, or vulnerabilities.
Building more complete profiles. Increasing coverage is funda-
mental for building accurate threat group profiles that enable iden-
tifying truly group-specific behaviors, which is critical given the
implications of threat group attribution. For example, misattribut-
ing an attack on country A as having been launched by country B,
when A and B were at war recently, could start a newwar. Coverage
can increase by adding new sources of threat reports and by using
automated extraction approaches [1, 17, 43]. In addition, our work
hints at the need to increase the diversity of threat groups ana-
lyzed. Notably, going from 152 groups in ATT&CK to 800 groups
in Malpedia reduces the ratio of groups with distinct behaviors
from 84.2% to 33.1% because ATT&CK focuses on the most popular
threat groups, which have received significant attention. Instead,

Malpedia contains a long tail of threat groups that have received
much less attention, with only 51.7% of the Malpedia groups having
a non-empty behavioral profile. Thus, it is fundamental that atten-
tion is not only focused on a few highly impactful threat groups,
but a larger number of groups receive enough attention.
Most-specific behaviors. The software used by a group is the
most distinctive behavior in both ATT&CK (73.0% of groups have
group-specific software) and Malpedia (24.0%), while vulnerabil-
ities are least distinctive in ATT&CK (31.6%) and techniques in
Malpedia (8.6%). Removing generic behaviors is important to build
accurate behavioral signatures. Identifying generic software is the
most straightforward, as it corresponds to publicly available soft-
ware such as tools, commercial software, and malware kits sold
underground. Generic vulnerabilities tend to have public exploits.
Identifying generic techniques is the hardest as it requires ranking
techniques by the number of groups that have used them, which
increases over time.
Legal use of behavior-based attribution. A key challenge with
behavior-based attribution is that just because a behavior was used
only by one threat group in the past, there is no guarantee the group
is still using that behavior, and that other groups have not adopted
the behavior. Behavioral profiles provide circumstantial evidence
with significant risk of misattribution, especially since different
groups may exhibit similar behaviors (e.g., using publicly available
software or common techniques). For these reasons, behavioral
profiles may face an uphill battle in court, being susceptible to
challenges from opposing experts that dispute the profile generation
methodology or the conclusions drawn from them.

Furthermore, threat groups are pseudo-anonymous. To initiate
legal proceedings, the individuals or legal entities behind a threat
group must be identified. On a positive note, behavioral profiles
may provide enough plausible evidence for a judge to authorize
further evidence collection.

5.4 Dataset Improvements
Our analysis reveals the following potential dataset improvements:
Software categories. The classification of software into tools and
malware in ATT&CK is useful to filter generic software, but it is
missing in Malpedia. Furthermore, it is not clear where malicious
kits should be placed, possibly indicating the need for a third cate-
gory. For tools, it may be possible to leverage existing efforts like
Common Platform Enumerations (CPE) [35] to avoid yet another
taxonomy. We also observe some likely misclassified software, e.g.,
Cobalt Strike is arguably a tool rather than malware.
ATT&CK domains. The split of techniques into domains used by
ATT&CK seems quite arbitrary as techniques may apply to different
domains, albeit with different implementations. Indeed, there are
instances of equally named techniques in different domains such
as Rootkit (T1014) in the Enterprise domain and Rootkit (T0851) in
the ICS domain. While the latter includes in the description refer-
ences to firmware rootkits and Stuxnet, having two equally named
techniques is confusing and likely unnecessary. The Enterprise
domain also includes Pre-OS Boot: System Firmware (T1542.001)
for capturing adversaries modifying system firmware to persist on
systems, which seems to describe a firmware rootkit. The split into
domains also complicates usage, as three technique taxonomies,
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one per domain, need to be considered. For example, given an ob-
servation of a rootkit on a device, different security vendors may
assign it any combination of the above three techniques. This makes
it tempting to focus on the Enterprise domain, comprising 76% of
all techniques and sub-techniques. A more unified taxonomy, with
domains encoded as an attribute, could streamline analysis.
Missing reports. Knowledge bases identify threat reports by their
URLs, which may become unavailable over time, e.g., if the vendor
goes bankrupt or is acquired by another vendor. In our data collec-
tion, roughly 5% of report URLs pointed to inactive resources. To
avoid losing reports, knowledge bases should send the report URLs
to archives such as the Wayback Machine [18] or APTnotes [3].

6 Related Work
Our research relates to the following prior CTI research:
Knowledge bases. Previous work has presented the design of the
two knowledge bases we use [40, 58]. Other work has analyzed
the usage of ATT&CK by systematically reviewing literature on its
applications [19, 47, 48]. Frequently, research uses the knowledge
bases simply as a source of threat reports from where IOCs can be
extracted [7, 21]. Our work differs in that it measures the utility of
ATT&CK and Malpedia for the specific case of adversary profiling.
Application-oriented studies. Several studies have examined the
use of ATT&CK across different cybersecurity contexts. Oosthoek
et al. [37] employed ATT&CK to map sandbox evasion techniques
across 951 Windows malware families, offering insight into both
commonly used and increasingly adopted techniques in recent
years. Virkud et al. [63] evaluate the ATT&CK framework in com-
mercial endpoint detection products and assess its effectiveness as
a security evaluation metric. They find that while these products
typically cover between 48%–55% of ATT&CK techniques, much
of this coverage consists of low-risk or less impactful rules. Their
findings suggest that although ATT&CK is increasingly used to
assess threat readiness, reported coverage frequently fails to reflect
actual detection capabilities in real-world scenarios. In another line
of work, Rahman et al. [42] investigate challenges in implementing
security controls (e.g., strong password policies) against ATT&CK
techniques. In simultaneous and independent work, Horst et al. [60]
examine the role of low-level IOCs (e.g., domains) and high-level
IOCs (e.g., TTPs) in ransomware attribution. They use a mixed-
methods approach, combining interviews with 15 ransomware at-
tribution experts and the analysis of 27 incident reports from two
sources. They show that experts rely more frequently on low-level
IOCs for attribution than on high-level IOCs, which they regard as
too generic. Our results align with theirs in raising concerns about
the use of behavioral traits for attribution. But our approaches are
quite different: Horst et al. examine 16 ransomware groups, while
we examine 807 threat groups covering different types of adver-
saries (e.g., APTs). In addition, we do not conduct interviews but
instead analyze more than 15,000 threat reports from two popular
knowledge bases. Most importantly, we measure for the first time
the fraction of threat groups with group-specific behaviors.
Automated CTI extraction. Husari et al. [17] made early efforts
to automate the extraction of TTPs from threat intelligence reports,
using a context-aware, rule-based approach to identify and extract
threat actions from both structured and unstructured CTI sources.

The extracted TTPs are standardized using the STIX [29] format,
with the tool achieving over 82% precision and recall on a pro-
prietary dataset. Extending this work, Alam et al. [1] employed
machine learning for automated extraction of attack patterns and
IOCs. Their framework further mapped the extracted behaviors
to the standardized ATT&CK framework and organized them in
a knowledge graph to facilitate predictive analysis. Complement-
ing these extraction-focused efforts, Rahman et al. [41] analyzed
667 CTI reports from the ATT&CK framework to study the preva-
lence and co-occurrence of TTPs used in APT campaigns, provid-
ing insights into adversary patterns. Our work builds upon these
approaches by combining threat intelligence data from both the
ATT&CK framework and Malpedia. We examine techniques and
vulnerability usage across adversary groups, offering insights into
building more comprehensive threat group profiles.

7 Conclusion
Our work measured the distinctiveness of the threat group behav-
ioral profiles using public knowledge bases, investigated how these
profiles can be complemented with additional vulnerability and
technique data, and, quite crucially, quantified to what extent the
produced profiles support reliable threat group attribution. Out
of 807 threat groups that we analyzed, 64% threat groups do not
have group-specific behaviors, or we failed to identify them due to
limited coverage. However, for 36% of the threat groups, we indeed
identified group-specific techniques, software, or vulnerabilities,
which could potentially be used as behavioral signatures to identify
their attacks. Our work identified limited coverage in public CTI
knowledge bases as a key challenge in building accurate behavioral
profiles that can identify true group-specific behaviors, avoiding
false positives. Consequently, improving coverage emerges as a
clear avenue for the CTI community to build distinctive behavioral
profiles and enable enhanced profile-based attack attribution.
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A Implicit Reference Extraction
As discussed in Section 4.2, threat reports may contain implicit
references to techniques. We conducted preliminary experiments
using large language models (LLMs) to extract techniques from the
downloaded threat reports. Specifically, we used the commercial
GPT-4 model, guided by a prompt shown in Listing 1, which we
experimentally identified as the most effective among other options.
To ensure the model analyzed the report content, we removed any
tables of techniques included at the end of the report.

Unfortunately, we obtained mixed results as the LLM frequently
hallucinated techniques, introducing false positives. An example
is ZScaler’s 2022 report on the Lyceum group [54]. For this re-
port, iocsearcher [7] identified eight techniques (without sub-
techniques), all of them in a table at the end of the report. These are
the same eight techniques that ATT&CK associates with Lyceum
from this report, suggesting that the contributor relied directly on
the table for extraction. When we provided the same report after
removing the table of identifiers, the LLM returned 11 technique
identifiers (seven techniques and four sub-techniques). Of these,
only two overlapped with the original table. We manually reviewed
the remaining nine, finding that while two were valid, seven were
false positives. An example of a correctly extracted implicit refer-
ence is Boot or Logon Autostart Execution: Startup Folder (T1547.001;
part of the Persistence tactic) that was extracted from the following
text: “written into the Startup folder in order to maintain persis-
tence.” An example of a false positive is Remote System Discovery
(T1018). When asked to justify it, the model responded: “While
the report does not specifically mention remote system discovery,
many backdoors and malware engage in network reconnaissance,
which aligns with T1018."

In future work, we plan to extend the LLM-based extraction and
compare it with existing NLP-based approaches [1, 17, 43].

I have a detailed threat report written in natural language.

I need help identifying the TTPs (Tactics, Techniques,

and Procedures) described in the report and mapping

them to their corresponding MITRE ATT&CK Technique IDs.

The output should include:

A list of tactics (high-level strategic goals) based on the

threat actor's behavior.

A list of techniques (specific actions or behaviors), with

their corresponding MITRE ATT&CK Technique IDs.

A description of procedures (the exact implementation or

variation of a technique as described in the report).

For each technique, provide both the name and the MITRE ATT&

CK Technique ID. Please ensure all identified TTPs are

clearly mapped to the most relevant MITRE ATT&CK

entries.

Here's the threat report:

[Insert threat report text here]

The output should be in this JSON format:

Example Output:

{

"tactics": ["Initial Access", "C2"],

"techniques": [

{"name": "Spear Phishing", "MITRE ID": "T1193"},

{"name": "C2 Channel Over HTTPS", "MITRE ID": "T1071"}

],

"procedures": ["Use of malicious scripts"]

}

Listing 1: Example prompt to instruct an LLM (in our case
GPT-4) to identify Tactics, Techniques, andProcedures (TTPs)
from a natural language threat report and map them to
their respective MITRE ATT&CK technique IDs, formatted
as JSON output.

B Group Behavior Evolution: Lazarus
As a case study, we investigated the evolution of the Lazarus Group
(G0032). Table 10 captures the evolution of the technique profile of
Lazarus between 2016 and 2022. Five additional reports published
after 2022 refer to Lazarus, but they either analyzed multiple threat
groups or did not explicitly mention any technique identifiers.

The profile increases steadily from 40 techniques in 2016 up to 91
in 2022. In 2016, a total of 40 techniques were observed for the group.
These include core capabilities such as discovery: System Network
Configuration Discovery (T1016), Application Window Discovery
(T1010), SystemNetwork ConfigurationDiscovery (T1016), credential
access: Keylogging (T1056.001), Password Spraying (T1110.003), and
data destruction: Disk Content Wipe (T1561.001).

Between 2017 and 2020, Lazarus introduced a smaller number of
new techniques, 2—10 annually. These include techniques for eva-
sion and stealth: Dynamic-link Library Injection (T1055.001), Stan-
dard Encoding (T1132.001),DLL Side-Loading (T1574.002) andNative
API (T1106). In 2021, Lazarus broadened its infrastructure behav-
iors with techniques Acquire Infrastructure: Domains (T1583.001),
and Obtain Capabilities: Digital Certificates (T1588.004). Finally, in
2022, Lazarus introduced a smaller but technically advanced set
of behaviors including in-memory execution to evade detection.
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Key techniques include Dynamic API Resolution (T1027.007), Re-
flective Code Loading (T1620), which enables obfuscated execution,
and KernelCallbackTable hijacking (T1574.013), an execution-flow
manipulation technique used to hinder analysis.

Out of the total of 91 techniques in the profile, only 6 are consid-
ered as group-specific in ATT&CK v15.1 (released in April 2024), the
first one beingDiskWipe: Disk ContentWipe (T1561.001) reported in
2016. In 2022, five new supposedly Lazarus-specific defense evasion
behaviors were reported: Obfuscated Files or Information: Dynamic
API Resolution (T1027.007), Indirect Command Execution (T1202),
System Binary Proxy Execution (T1218), Hijack Execution Flow: Ker-
nelCallbackTable (T1574.013), and Reflective Code Loading (T1620).
However, if we consider ATT&CK v18.1 (released in October 2025),
five of the supposedly group-specific Lazarus techniques have been
reported as being used by other groups and only Hijack Execution
Flow: KernelCallbackTable (T1574.013) remains specific to Lazarus.

Table 10: Evolution of the Lazarus technique profile over
time based on ATT&CK v15.1. For each year, we list the num-
ber of reports, techniques in those reports (cumulative in
parenthesis), and group-specific techniques (cumulative in
parenthesis). *In the latest ATT&CK v18.1, only one tech-
nique remains group-specific.

Year Reports Techniques Group-Specific Techniques

2016 5 +40 (40) +1 (1) T1561.001
2017 2 +2 (42) 0 (1) –
2018 4 +28 (52) 0 (1) –
2019 1 +6 (56) 0 (1) –
2020 4 +9 (58) 0 (1) –
2021 3 +26 (78) 0 (1) –
2022 2 +30 (91) +5 (6) T1620, T1202, T1218,

T1027.007, T1574.013*
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