MARVIN: Efficient And Comprehensive Mobile App Classification Through Static and Dynamic Analysis

Martina Lindorfer, Matthias Neugschwandtner, Christian Platzer

SBA Research, Vienna, Austria
IBM Research, Zurich, Switzerland
International Secure Systems Lab, Vienna University of Technology, Austria
Real or Fake Flappy Bird App?

Origin

Reviews

Permissions

Appverify

Antivirus
Use Cases

SELECT * FROM apps
WHERE malice_score > 5.0
AND has_nw_traffic = True
...

Martina Lindorfer: MARVIN (COMPSAC 2015)
Outline

• App Classification
• Evaluation
• Future Work and Conclusion
Classification Goals

• Use machine learning to classify Android apps

• Address grey area between malware and goodware
 - Provide user with a malice score from 0 to 10

• Address drawbacks of related work
 - Only consider static features
 - Trained and evaluated on very small dataset
 - Do not account for history of dataset

• Long-term practicality through efficient retraining
Static vs. Dynamic Analysis

• **Static analysis**…
 - code is not executed
 - all possible branches can be examined (in theory)
 - quite fast

• Problems of static analysis…
 - undecidable in general case, approximations necessary
 - obfuscated & packed code
 - self-modifying code
 - code (down)loaded at runtime
Static vs. Dynamic Analysis

• **Dynamic analysis…**
 - code is executed
 - sees behavior that is actually executed
 - sees dynamically loaded code

• **Problems of dynamic analysis…**
 - in general, single path is examined
 - analysis environment possibly not *invisible*
 - scalability issues

Combine features from static AND dynamic analysis
Feature Extraction in ANDRUBIS

• Extended ANDRUBIS app analysis sandbox [BADGERS2014]

• Static Analysis
 – Required/Used permissions, Activities, Services, Receivers, …
 – Certificate metadata (owner, validity, …)
 – Included libraries

• Dynamic Analysis
 – File/network/phone activities
 – Cryptographic operations
 – Leaked data
 – Loading of dynamic code (DEX and native code)

• Output: Sparse feature vector of binary features
System Overview

Reference Apps

End-User Apps

Feature Extraction

Static Analysis

Dynamic Analysis

Feature Selection

Training

Model

TRAINING MODE

CLASSIFICATION MODE

Classification

Malice Score
Classification Challenges

- High-dimensional feature space
 - Explicit feature selection:
 Order features by discriminative power (F-Score)
 - Implicit feature selection:
 Order features by weights from classifier
- Sparse data
- Grey area between malware and goodware
 - Classifier outputs probability that sample belongs to class
 - Scale probability in interval [0,10]
- Performance

Experiments with SVM and linear classifier with different regularization methods
Outline

- App Classification
- Evaluation
- Future Work and Conclusion
Evaluation Overview

- Large training and testing sets
 - Set of goodware apps from Google Play Store
 - Set of known malware with AV labels from VirusTotal
 - 135,823 unique Android applications (15,741 known malware)

Goals:
1. Evaluate accuracy of different classifiers
2. Evaluate performance (market-scale classification)
3. Evaluate long-term practicality
 - History of samples in dataset matters [ESSoS2015]
 - Estimate retraining intervals and efficiency
4. Evaluate most distinguishing features
Classification Accuracy

- Accuracy of 99.83% overall
- 0.0275% false positives
- 1.3543% false negative
- Bayesian detection rate of 98.24%
Market-Scale Classification

→ Best config: 58.5 false alarms
→ Worst config: 471 false alarms

~ 1,500,000 apps in Google Play
Market-Scale Classification

Google Play: up to 45,000 new apps per month

Our current capacity: 3,500 apps/day
Long-Term Practicality (Less Features)
Long-Term Practicality (More Features)
Distinguishing Features

- Gain insights into classification through F-Score/feature weights

- Features most relevant for classification of malware:
 - Required/Used permissions
 - Certificates
 - SMS-related features
 - Information leaks
 - Dynamic code loading
 - Network activity and contacted hosts
Outline

• App Classification

• Evaluation

• Future Work and Conclusion
Future Work

• Dynamic features++
 - System-level events from native code analysis
 - More intelligent, user-like UI interactions

• Static features ++
 - Meta info in app markets from AndRadar [DIMVA2014]

• Interception of app installation process

• Defence against analysis evasion (arms race)
Conclusion

• Classification of Android apps using machine learning
 - Based on static AND dynamic features
 - Represented as a malice score

• Large-scale evaluation on over 135,000 apps
 - Correctly classifies 98.24% of malware samples
 - Very low positives of < 0.04%
 - Retraining to maintain accuracy

• Publicly available for submissions through web interface and dedicated mobile app
Questions?

email mlindorfer@iseclab.org
 andrubis@iseclab.org

twitter @iseclaborg

http http://www.iseclab.org/people/mlindorfer
 https://anubis.iseclab.org
References

Andrubis - 1,000,000 Apps Later: A View on Current Android Malware Behaviors

[ESSoS2015] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon
Are Your Training Datasets Yet Relevant?

AndRadar: Fast Discovery of Android Applications in Alternative Markets
Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2014.