Take a Bite
Finding the Worm in the Apple

Martina Lindorfer, Bernhard Miller, Matthias Neugschwandtner, Christian Platzer
Secure Systems Lab, Vienna University of Technology
Introduction

Is MacDefender Malware a Sign of the Macpocalypse?
By Tony Bradley, PCWorld May 27, 2011 7:06 AM

More than 600,000 Macs infected with Flashback botnet
by Steven Musil | April 4, 2012 6:25 PM PDT

APPLE '10 YEARS' BEHIND MICROSOFT ON SECURITY: KASPERSKY
Malware
by Steve Evans | 25 April 2012
Welcome to Microsoft’s world, Eugene Kaspersky tells Apple

Mac malware Crisis on Mountain Lion eve?
by Paul Ducklin on July 25, 2012 | 10 Comments
FILED UNDER: Apple, Featured, Java, Malware, OS X

Even Apples sometimes have worms in them, admits Cupertino
Sinful humans can drag down even angelic Macs
By Anna Leach, 26th June 2012

Monday, June 25th 2012 at 1:50 pm
Apple No Longer Claims It’s Immune to Viruses
By Eric Limer (Twitter Facebook Email)
Introduction

It doesn’t get PC viruses.

A Mac isn’t susceptible to the thousands of viruses plaguing Windows-based computers. That’s thanks to built-in defenses in Mac OS X that keep you safe, without any work on your part.

It’s built to be safe.

Built-in defenses in OS X keep you safe from unknowingly downloading malicious software on your Mac.
Outline

• Problem Overview

• iHoneyClient

• Evaluation

• Future Work & Conclusion
Problem Overview

• Mac OS X reputation of being safe from malware
• Cost-benefit analysis for malware authors
 – Mac OS X currently 9% market share
 – Infection through social engineering (SE):
 Mac users false sense of security?
 – Infection through drive-by downloads:
 Oracle Java, Adobe Flash Player, Adobe Reader
• Several instances of targeted attacks
• Apple slow to react with updates in the past
 – Almost 2 months to fix Java vulnerability targeted by Flashback
• Research in this direction is sparse
New Malware Samples/Quarter

Source: McAfee Threats Report: First Quarter 2013

Mac OS X Samples

Source: McAfee Threats Report: First Quarter 2013
Our Motivation

• **Anubis**: Analyzing Unknown Binaries
 Public Dynamic Malware Analysis System
 https://anubis.iseclab.org

 - Windows analysis (since February 2007)
 59,047,857 submissions, 36,885,877 unique files

 - Android analysis (since June 2012)
 1,047,366 submissions, 726,853 unique files

 - What about Mac OS X?
 How many Mac samples are there in the wild?
 How can we automate their analysis?
Our Approach

• Detection of Mac malware in the wild
 – Crawl known drive-by download sites
 – High-interaction honeypot simulating the whole system
 – Detect successful exploits through created processes & files
 – Record network activity for further exploit analysis

• Dynamic Analysis of Mac malware
 – Execute samples in a controlled environment
 – Record system-level activities (created processes & files)
 – Record network activity

→ VirtualBox-based **iHoneyClient** (honeypot + analysis mode)
Outline

• Problem Overview

• iHoneyClient

• Evaluation

• Future Work & Conclusion
iHoneyClient Analysis Mode

- Upload and execute sample to iHoneyClient worker VM
- Logging of all system calls and their arguments
- Monitoring of network activity
- Post-processing to create analysis report
iHoneyClient Honeypot Mode

- Retrieve drive-by download URLs from blacklists
- Preprocess URLs (check availability + content type)
- Visit URL in iHoneyClient worker VM
- Post-processing to detect new infections
Implementation

• System call logging with DTrace
 - Dynamic tracing framework built-in Mac OS X
 - Static and dynamic kernel-level “probes”
 - Probe executes a script to log system call and arguments

• Challenges:
 - Vanilla Mac OS X not fully supported by VirtualBox
 → “Hackintosh” modifications (custom bootloader, kernel module to simulate genuine Apple HW)
 - Process can set P_LNOATTACH flag to disallow tracing
 → Kernel module to prohibit setting this flag
Outline

• Problem Overview

• iHoneyClient

• Evaluation

• Future Work & Conclusion
2-Part Evaluation

• Part 1: Evaluation of correct functionality
 – Honeypot mode:
 Detect drive-by download exploits from Metasploit ✓
 – Analysis mode:
 Compare analysis reports with AV threat descriptions ✓

• Part 2: Evaluation on real-world data
 – Honeypot mode:
 Crawl blacklists for drive-by downloads
 – Analysis mode:
 Give overview of current Mac malware behavior
Honeypot Results

- Blacklists for drive-by download sites
 - Malware Patrol
 - Malware Domain List
 - Clean MX
- 6,028 malicious URLs in January 2013
- 2,844 URLs after filtering
- 288 sites malicious JavaScripts
- 5 successful drive-by downloads
 - Dropped 12 different binaries
 - All Windows binaries!
 - But: exploit was successful (cross-platform exploit!)
Analysis Results

- 148 Mac samples from VirusTotal in January 2013

29% showed any network activity
- Mainly HTTP, SSL only in 2 samples
- Only 11% resolve IP through DNS
- No fallback mechanisms if connection to server failed

43% performed file modifications
- Only 6% to LaunchAgent entries (for surviving reboot)

14% tried to create processes
- Only 50% of those calls were successful

- Low level of sophistication in examined samples
Outline

• Problem Overview

• iHoneyClient

• Evaluation

• **Future Work & Conclusion**
Future Work

• Perform larger-scale analysis
 - e.g. Google Safe Browsing API

• Investigate cross-platform vulnerabilities and malware
 - Mac “infected” by Windows malware

• Integrate iHoneyClient in public dynamic malware analysis system Anubis
Conclusion

- First to present a dynamic Mac analysis environment
- Also acts as a high-interaction honeypot
- Examined behavior of current Mac malware
- Found little sophistication in existing samples
- Examined > 6,000 URLs for drive-by downloads
- Found no Mac malware in the wild
 - Still successful drive-by downloads (by accident?)
 - No demand (yet) for Mac payloads?
- Results lead us to investigate cross-platform vulnerabilities and malware
Questions?

mlindorfer@iseclab.org
http://www.iseclab.org/people/mlindorfer